
^Departirmitof
insportation icrocomputers

in transportation
\AfA^

A 'vtiC

Commercial Software

Applications For

Paratransit

UMTA Technical Assistance Program

NOTICE
This document is disseminated under the sponsorship of the

Department of Transportation in the interest of information

exchange. The United States Government assumes no liability

for it contents or use thereof.

The United States Government does not endorse manufacturers

or products. Trade names appear in the document only because

they are essential to the content of the report.

This report is being distributed through the U.S. Department

of Transportation’s Technology Sharing Program.

DOT-l-84- 51

. f)b

/lo
^

\J

Commercial Software
Applications for Paratransit

Final Report

July 1984

Prepared by

Dynatrend, Incorporated

21 Cabot Road
Woburn, Massachusetts 10801

V

\
'

u'l-otD
-

Prepared for

Office of Methods and Support

Urban Mass Transportation Administration

Washington, D.C. 20590

Distributed in Cooperation with

Technology Sharing Program
Office of the Secretary of Transportation

DOT-l-84-51

TECHNICAL REPORT STANDARD TITLE PAGE

3. Recipient's Cotolog No.1. Report No.

DOT-I-84-51

2. Government Accession No.

MA-06-0039-84-1
4. Title and Subtitle

Commercial Software Applications for Para transit

5. Report Dote

July 1984

6. Performing Organization Code

7 . Author's) 6. Performing Organization Report No.

M. R. Cutler, A. Cabrera, P. A. Monahan, L.

9. Performing Organization Nome and Address

DYNATREND INCORPORATED
21 Cabot Rd.

Woburn, MA 10801

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Urban Mass Transportation Administration
400 Seventh Street, S.W.
Washington. D.C. 20590

15. Supplementary Notes

J. Harmon
10 .

11 .

Work Unit No.

Contract or GronI No.

DTRS-57-83-C-00109
13. Type of Report and Period Covered

User Manual
July 1984

14. Sponsoring Agency Code

UMTA

*Project Manager. This document is being distributed in cooperation with the
Technology Sharing Program of the Office of the Secretary
of Transportation.

16. Abstract

This report is a User Manual for the application of commercially available

software products to paratransit management. An extensive case study, using

the microcomputer database manager, R:base 4000, is documented. It discusses

the manual recordkeeping and operational demands placed on paratransit

agencies and how these functions can theoretically be automated. It then

describes in detail the automation of specific functions including scheduling;

client and vehicle recordkeeping; and report generation for billing and

performance measurement. Other options are discussed more generally. Data

from an actual paratransit operation are used to perform all data processing

functions. The focus is on the use of relational database management

software. Spreadsheet, word processing and graphics applications are also

discussed. Information is provided on how to select software and on how

to customize generic software products for specific applications.

17. Kay Word* 16. Distribution Stotomont

microcomputers , commercial software
packages, record-keeping, billing,

scheduling, spreadsheets, word
processing, graphics, generic
software oroducts

Availability is unlimited. Document

is being released to the National

Technical Information Service,
Springfield, Virginia 22161 for sale

to the U.S. public.
^

19. Socurity Clatsif. (of Hij« roport) 20. Saeurity Classif. (of tbi* paga) 21* No. of Pagas 22. Prico

unclassified unclassified 181

Form DOT F 1700.7

PREFACE

This report examines the application of commercially available software to

paratransit management. An extensive case study, using the microcomputer
database manager, R:base 4000, is documented. This project was funded by

the U.S. Department of Transportation, Urban Mass Transportation
Administration, Office of Methods and Support. The work was performed by

DYNATRENO Incorporated, under contract to the Transportation Systems
Center (TSC).

We would like to acknowledge the support of Mr. Tom Hillegass who directed
this project for UMTA, and Mr. Paul Bushueff from TSC. The DYNATRENO
Project Manager was Mr. Marc Cutler. Technical support was provided by

Mr. Antonio Cabrera and Ms. Patricia Monahan of DYNATRENO, and by

Mr. Lawrence Harman of Call-A-Ride of Barnstable County. The report uses
for case study purposes, actual paratransit operating data supplied by

Mr. Harman.

Chapter 1.0 describes the manual recordkeeping and operating demands
placed on a paratransit agency using Call-A-Ride (CAR) as a model. It

also presents a theoretical framework for automating these functions.
Chapter 2.0 represents the core of report. It describes in detail the

process of using specific software products to automate functions such as

scheduling; client and vehicle recordkeeping; and report generation for

billing and performance measurement. The focus of this section is on the
use of R:base 4000, a relational database management software product.
Also discussed more briefly are spreadsheets, word processing and graphics
applications. All data processing functions and computer products were
generated using the actual data supplied by CAR. Chapter 3.0 discusses,
in considerably less detail, other automation options available to users.

This report does not constitute an endorsement of any product or group of

products. Given the highly volatile software market, and the range of
user applications, users are encouraged to conduct their own in-depth
review before selecting a software package for use in their agency.
Appendix A provides information to assist users in this process.

Appendices are also provided on the use of floppy disks; customizing the
software to better perform specific functions; screen forms to assist
users in replicating the functions described in the manual; blank forms
for future use; and an update on recent changes in R:base 4000.

Note: In a separate but coordinated project, a similar client file,
scheduling and reporting system has been developed using the
popular DBASE II mi crocomputer database management program. All

the user programs and documentation for this menu-driven system are
available from the Government for a nominal copying fee. (This

does not include the DBASE II program itself, which is a

proprietary product and must be purchased elsewhere for about
$500.) This system is offered as a fully operable example, to be

customized by the paratransit operator with the help of a local

consultant or other support person skilled in DBASE II

implementation. Contact the Transportation Systems Center at

(800)225-1612 and ask about "SST" for information.

Tpyf _ UP'^bT

.Lg.„
.

' "• ^’ '-

rf:

pnffu *'Au5t ^^*6 «A." .

f(^40 >Y«»^J6jT6<?^nr»t id .Z.Ut sAf f

ftH««'»!j^t»T ?fi* >r.'i*<* ?M<’-

aM‘eV^ ‘fi!^ W :f5§iftw^
- _ _ . .- »«• 1^3’

•- T:yH ‘

. i -- -^ <

y*r,

ii'*T* -fi
..r^.

. «, rajlStlrU '^1 .»t]

«d.t^t5»fvidrt^4^ bfUGWis^AVTi

VJ)t,^ ?yt} ftf ^9?fm^5«T. ./»9f

'*®"^
'

i

‘^"’
irv.- ,F mlfMAnAh

4q 'Itt M. «0l' innqd^ etfiT^”

iiJ 4&a S f 71

;

I’ i\

IV
i!t u»*’ t %. «^-j 4^*^ ^ iJi '•i*B‘aoiJU'»^i<»''ltt»« *1* JtJfS.iMqA

afTio^)ioftfti tUwf»»' **<3

,IX»W d?$K<:A JndJdTt m' *>n^ »’92u siulul ,ioV

r

s >» , -V. - ‘:i^&ip. ” y-i^

'fl hiz-'T'^ ; beJ«nffei<M)i-**>i>^ d?fci*S»2 ft fli ;9ioH

»rtj ijo^eq bdqof»vsP »*9i^; a^rt wdtrfv-?

'M jne^ooiq ,m»i«jn?t<\6w iiiruqoq

<rtf '5V’ i 'dor'^Ptn^WtiJoii Ms isew srti

vt ^ H- vqqi- ‘•ff«rbw)»i '7r^^;i^i^i<!^ 9f<^ •
;«tT«ffrm-

rHTAli

• Ii n i»1?f f'f ^c iTO^ 11*4 Vv“^ w • * wvin'v

'-tr^M'^'Jir ia»r*i*'vw*ef<' .«i’U»‘"'|f;*r.;«,f.'avJ Kft;»MnwW5|r‘.r^
,

.. ,^4,^^. ^T-'raHW* mW SfalTssyfiS) ,.-\,

<« ' '

1* 2!r
—

-

ljH0

lifitaL

TABLE OF CONTENTS

Section Page

1.0 PARATRANSIT MANAGEMENT: MANUAL RECORDKEEPING AND THE POTENTIAL
FOR AUTOMATION 1-1

1.1 CALL-A-RIDE'S MANUAL RECORDKEEPING AND REPORTING
REQUIREMENTS 1-1

1.1.1 BACKGROUND 1-1

1.1.2 CLIENT RECORDS 1-1

1.1.3 VEHICLE SCHEDULING 1-3

1.1.4 VEHICLE OPERATING STATISTICS 1-7

1.1.5 CLIENT/AGENCY BILLING 1-7

1.1.6 BUDGET PREPARATION 1-13

1.1.7 REPORTING REQUIREMENTS AND PROGRAM EVALUATION 1-15

1.2 MICROCOMPUTER APPLICATIONS FOR PARATRANSIT 1-15

1.2.1 CONCEPTUAL DESIGN 1-15

1.2.2 Relational DBMS Files and Applications 1-17

1.2. 1.1 Vehicle Scheduling 1-19
1.2. 2. 2 Billing 1-19

1.2. 2. 3 Report Generation 1-22

1.2.3 Spreadsheet Files and Applications 1-22
1.2.4 Word Processing and Graphics Files and Applications. 1-22

2.0 AUTOMATING THE CAR DATA BASE 2-1

2.1 INTRODUCTION 2-1

2.1.1 Selection of Software 2-1

2.1.2 Instructional Approach 2-2

2.1.3 User Environment 2-3

2.1.4 Organization of Chapter 2-4

2.2 USING R:BASE TO SET-UP A DATA BASE 2-4

2.2.1 The R:base Manual ' 2-5
2.2.2 On-Screen Help 2-6

2.2.3 How R:base Works 2-6

2. 2. 3.1 Structure 2-6
2. 2. 3. 2 Entering/Exiting 2-7

2. 2. 3. 3 Modes 2-7

2. 2. 3. 4 Editing and Syntax Messages 2-8

2. 2. 3. 5 Special Functions 2-9

iii

TABLE OF CONTENTS (Continued)

Section Page

2.2.4 Conceptualizing the Data Base 2-9
2.2.5 Creating a Data Base 2-10

2.2.5. 1 Accessing a Data Base 2-12
2. 2. 5. 2 Establishing Attributes 2-13
2. 2. 5. 3 Defining Relations 2-16
2. 2. 5.4 Defining Rules 2-16
2. 2. 5. 5 Passwords 2-19
2. 2. 5.6 Ending Data Base Definition 2-19
2. 2. 5. 7 Creating Additional Relations 2-19

2. 2. 5.8 Altering Data Base Structure 2-23

2.2.6 Entering and Changing Data 2-25

2. 2. 6.1 Entering Data 2-25
2. 2. 6. 2 Changing and Deleting Data 2-28

2.3 APPLYING RrBASE TO TRIP SCHEDULING 2-30

2.3.1 Step 1: Establishing Base Relations (Files) 2-30
2.3.2 Step 2: Load Prsched File 2-30
2.3.3 Step 3: Projecting Date-Specific Prsched Files 2-32

2.3.4 Step 4 (Optional): Project/Edit Prschedn Files for

Rest of Month 2-34
2.3.5 Step 5: Loading Real Time Trips 2-34

2.3.6 Step 6: Combining Prschedn and Realtime Relations 2-37

2.3.7 Step 7: Generating Vehicle Schedules 2-38

2.3.8 Step 8: Combining Daily Schedules 2-38

2.4 REPORT GENERATION 2-40

2.4.1 Measuring Performance through an R:base Report 2-40

2.4. 1.1 Context 2-40
2. 4. 1.2 Defining a Report 2-44

2.4. 1.3 Editing/Creating a Report 2-46

2.4. 1.4 Defining Variables 2-47

2. 4. 1.5 Locating Attributes and Variables 2-50

2.4. 1.6 Marking the Report Layout 2-50

2.4. 1.7 Page Size 2-51

2.4. 1.8 Printing a Report 2-51

2. 4. 1.9 Deleting a Report 2-51

TABLE OF CONTENTS (Continued)

Section Page

2.4.2 Other Uses for Reports 2-51

2.4. 2.1 Ridership Analysis 2-51
2.4. 2.2 Invoicing 2-51

2. 4. 2. 3 Disaggregating Performance Statistics 2-52

2. 4. 2. 4 Using Select to Generate Output 2-54

2.5 OTHER APPLICATIONS SOFTWARE 2-55

2.5.1 Spreadsheets 2-55

2.5. 1.1 Using Spreadsheets for Financial Planning 2-56
2.5. 1.2 Using Spreadsheets for Budget Management 2-60
2.5. 1.3 Using Spreadsheets for Performance Measurement 2-63

2.5.2 Graphic Applications 2-65
2.5.3 Integrating R:base with a Word Processing Program 2-68

3.0

USER OPTIONS 3-1

3.1 VARIATIONS ON CHAPTER 2.0 APPLICATIONS 3-1

3.1.1 General Operating Procedures 3-1

3. 1.1.1 Service Type 3-1

3. 1.1.2 Service Level Requirements 3-2

3. 1.1. 3 Location of Scheduling/Dispatching Functions . 3-3

3. 1.1.4 Customer Interaction 3-4

3.1.2 File Attributes 3-5

3. 1.2.1 Choice of Key Fields 3-5

3. 1.2. 2 Client Specific Fields 3-5
3. 1.2.3 Trip Specific Fields 3-6

3. 1.2.4 Vehicle Specific Fields 3-8

3.1.3 Reporting Requirements 3-8

3.2 OTHER DATA BASE APPLICATIONS 3-10

3.2.1 Financial Management 3-10
3.2.2 Payroll 3-10

3.2.3 Personnel Files 3-11

3.2.4 Fixed Asset Inventory 3-11

3.2.5 Complaints, Incidents, and Accidents 3-12

V

APPENDICES

Appendix Page

A SELECTING A DATA BASE MANAGER A-1

A-1 PRIORITIES AMONG THE SELECTION CRITERIA A-1
A-2 SOFTWARE AVAILABLE A-1

A-3 REVIEW PROCEDURES A-2
A-4 BACKGROUND ON DBMS CONCEPTS A-2
A-5 CHARACTERISTICS OF A GOOD DBMS A-3
A-6 SELECTION CRITERIA A-4
A-7 CHARACTERISTICS OF SPECIFIC DBMSs A-5

B USING RiBASE UN FLOPPY DISKS B-1

C CUSTOMIZING R:BASE C-1

C-1 STEP 1 - DEFINE THE APPLICATION TO CUSTOMIZE C-2
C-2 STEP 2 - CREATE THE COMMAND FILES AND LOCAL VARIABLES C-3
C-3 STEP 3 - REVIEW AND TEST C-12
C-4 SUMMARY C-13

D SCREEN FORMS D-1

D-1 RELATIONS D-2
D-2 RULES D-9
D-3 FORMS D-11

D-4 REPORTS D-14
D-5 COMPLETE MASTER CLIENT FILE D-19

E BLANK FORMS E-1

F NEW R:BASE FEATURES F-1

F-1 INTRODUCTION F-1
F-2 LOCAL VARIABLES F-1

F-3 CONDITIONAL PROCESSING F-2

F-4 FILE PROCESSING F-2

F-5 NEW RELATIONAL COMMAND F-2

LIST OF FIGURES

Figure Page

1-1 Sample Client Record 1-2

1-2 Preliminary Scheduling Procedure, Pre-Scheduled Trips 1-4

1-3 Preliminary Scheduling Procedure, Dial-a-Ride Trips 1-5

1-4 Manual Paratransit Scheduling Procedure 1-6

1-5 Sample Daily Vehicle Schedule 1-8

1-6 Sample Vehicle Operations Report 1-9
1-7 Sample Agency Invoice 1-10
1-8 Hourly Vehicle Utilization Chart by Program 1-13

1-9 Sample Weekly Vehicle Utilization Chart by Program 1-14
1-10 Sample Statistical Report 1-16
1-11 Conceptual Design of Microcomputer Applications 1-18

1-12 Automated Vehicle Scheduling Procedure 1-20
1-13 Automated Client/Agency Billing Procedure 1-21

1-14 Automated Vehicle Operations Report 1-23
1-15 Automated Vehicle Maintenance and Repair Report 1-24
1-16 Automated Passenger Operations Report 1-25

1-

17 Automated Fleet Operations Report 1-26

2-

1 THE STRUCTURE OF R:BASE 4000 2-6
2-2 R:BASE PROMPT 2-7

2-3 R:BASE MODE PROMPTS 2-8
2-4 SYNTAX MESSAGE 2-8
2-5 CREATING A DATA BASE 2-11
2-6 R:BASE TIERS 2-12
2-7 ATTRIBUTE DEFINITION FOR VEHICLE SCHEDULE FILES 2-13
2-8 DEFINING A RELATION 2-16
2-9 RULES DEFINITION FORMATS 2-17
2-10 RULE OPERATORS 2-17
2-11 DEFINING RULES FOR CAR 2-18
2-12 VEHICLE SCHEDULE CODES 2-18
2-13 DEFINING PASSWORDS 2-19
2-14 DEFINING PRSCHED 2-20
2-15 PRSCHED RELATION 2-21
2-16 RULES FOR CAR DATA BASE 2-22
2-17 DELETE RULES COMMAND 2-23
2-18 DELETING AND ADDING KEYS COMMANDS 2-23
2-19 RENAMING COMMANDS 2-24
2-20 PROJECT COMMAND 2-24
2-21 UNION COMMAND 2-24
2-22 ENTERING FORMS DEFINITION 2-26
2-23 SAMPLE FORM 2-26
2-24 CHANGE AND EDIT COMMANDS 2-28
2-25 DELETE COMMANDS 2-29
2-26 USING RrBASE FOR TRIP SCHEDULING 2-31
2-27 MASTER CLIENT FILE 2-36
2-28 SAMPLE VEHICLE SCHEDULE 2-39
2-29 RIDERSHIP REPORT {"TRIPS") 2-41

2-30 INVOICE REPORT ("MEDBILL") 2-42
2-31 VEHICLE STATISTICS REPORT ("VEHSTATS") 2-43
2-32 ENTERING THE REPORT MODULE 2-44

vii

LIST OF FIGURES (Continued)

Figure Page

2-33 VEHOPS RELATION 2-44
2-34 REPORT GENERATION PROCESS 2-45
2-35 LAYOUT FOR REPORT "VEHSTATS" 2-47
2-36 MANUALLY LAYING OUT THE REPORT DESIGN 2-48
2-37 VARIABLES FOR "VEHSTATS" REPORT 2-49
2-38 CITY INVOICE ("CITYBILL") 2-53
2-39 CLIENT BILL ("BILL") 2-53
2-40 DISAGGREGATED VEHICLE STATISTICS 2-54
2-41 VEHICLE MASTER REPORT 2-55
2-42 SPREADSHEET DESIGN 2-56
2-43 FINANCIAL PLANNING 2-57
2-44 BUDGET MANAGEMENT 2-61
2-45 BUDGET MANAGEMENT - II 2-64
2-46 PERFORMANCE MEASUREMENT 2-65
2-47 CAR'S RIDERSHIP CHARACTERISTICS 2-66
2-48 COMPARING CAR'S INCOME/EXPENSE/VEHICLE HOURS BY PROGRAM 2-67
2-49 FILE OUTPUT COMMAND 2-68
2-50 SAMPLE OUTPUT FILE 2-69
2-51 REARRANGING THE OUTPUT FILE WITH PERFECT WRITER 2-69
2-52 SAMPLE LETTER WITH PERFECT WRITER COMMANDS 2-70
2-53 FINAL SAMPLE LETTER 2-71

A-1 POPULAR DBMSs A-2

C-1 COMMAND FILE "CH0ICES1.CMD" C-4
C-2 TEXT FILE "MENU1.DAT" C-4
C-3 COMMAND FILE "CHECK.CMD" C-5
C-4 COMMAND FILE "ADD.CMD" C-7

C-5 TEXT FILE "ADDTXT.DAT" C-7
C-6 COMMAND FILE "CH0ICES2.CMD" C-9

C-7 TEXT FILE "MENU2.DAT" C-9
C-8 COMMAND FILE "UPDATE.CMD" C-10
C-9 COMMAND FILE "UPDAT2.CMD" C-11

C-10 TEXTFILE "MESSAGE.DAT" C-11
C-11 SUMMARY OF CUSTOMIZING EXAMPLE C-14

D-1 MSCLIENT RELATION D-3
D-2 PRSCHED RELATION D-4

D-3 REALTIME RELATION D-5

D-4 VSCHED RELATION D-6

D-5 VEHOPS RELATION D-7

D-6 VMASTER RELATION D-8

D-7 RULES D-10
D-8 CLIENT FORM D-12

D-9 SCHEDULE FORM D-12

LIST OF FIGURES (Concluded)

Figure Page

D-10 RTSCHED FORM D-13
D-11 OPERATE FORM D-13
D-12 VEHSTATS REPORT D-15
D-13 TRIPS REPORT D-15
D-14 CLFILE REPORT D-16
D-15 BILL REPORT D-16
D-16 CITYBILL REPORT D-17
D-17 MEDBILL REPORT D-17
D-18 VEHSCHED REPORT D-18
D-19 MASTER CLIENT FILE D-20

E-1 ATTRIBUTE DEFINITION FORM E-2
E-2 MANUALLY LAYING OUT THE REPORT DESIGN E-3

LIST OF TABLES

Table Page

2-1 DATA BASE SPECIFICATIONS 2-3
A-1 DBMS CHARACTERISTICS A-6

IX

i

cf-tr A® " . T-’W 2"i!»

V»T^V» • dW^

•«l

'

1* ’
'
;V* 'v'^

V * . V 4 H -b^ w V ^ v» 4 % V*-

V > ’J"*' w i®)i.p' . .^H
,

,'/'/'
“ ‘ ' *SV. "- - * ‘ - ' '’^"' •

. 1%-^*

U 4*^4' T^f|W. 5M4f ^ ^
.X». -.««»><(#;* . ,

, j.;xVJSt
'4> • -

1> ^||

' W .-.
»
‘•-••r- “-x :

. -^:,- v^c? I^V
'ff .>i' ', ,!-b,«^Nf» ,

,-. b’.' A.* b 4f.y b^^vS,4'.C. J
’1 V.

mi

iw
'^el.HUr it> ti?u iv *.

c,r^a! 4 * . . v» 4 •>• •_• . • « #.. »

4

b'jirj, , \Uo
d-A ‘ 'V ‘ < ••v^v,.. . - . . 4,4V w^.-^4aT^4^^iA^^w <aNia

4
•

'S"‘2 .

Ti .*. . l'

L
'• •

...-'

-A-i* A . .
-

^»>-

V^^(*7»7A" -A -' • » ’! ^

^ , V”''’^"*'
- ^ <>'*«»

-:(' '

'^*^‘
.4||^'‘’^

'

' i **''',,.<»* -fSTf-f,* J,t 1.4-.. .- i,#,. . 4^-1
I

* * 14* ‘/. *'-'^
._

••'• •.'•* ** V . -..j 4 «4 f l-f*< ijpi'A ^4,.

r » • * /*.'« m i y.fX A"*•^4 .. •"’ Vi
!(... !»' V -.'

1 ,".. .

•

-

4f ‘

'
^t-V' -.:f',i..

...>.t....^4,4li

’’tvjiSJL''" ’’is

‘ ’

>w

^
' '••' * '' ^ '>VA-V' fiV 4> . . - »n#H, V.. ,.

'A .
***. S .;tv ; i-.HV''‘ *. 1^1 '

.

•' ".'*

pfi .

1 41 /

'nj

1.0 PARATRANSIT MANAGEMENT: MANUAL RECORDKEEPING AND THE POTENTIAL FOR
AUTOMATION

This section describes the manual recordkeeping demands placed on a

paratransit agency and presents a theoretical model for automating these
functions. The description of the manual recordkeeping system is based on an

actual paratransit operator, Call-A-Ride of Barnstable County (CAR). CAR
serves as a case study throughout the remainder of this Manual.

1.1 CALL-A-RIDE 'S MANUAL RECORDKEEPING AND REPORTING REQUIREMENTS

1.1.1 Background

Between 1975 and 1979, CAR, a private non-profit corporation, provided
consolidated human services transportation for residents of Cape Cod. General
public transportation service was initiated in 1978.

CAR's service area included fifteen towns and covered approximately 394 square
miles. For the first four months of 1978, twenty-five vehicles were in

operation. In May of that year, the number of vehicles in-service was reduced
to fourteen. Approximately 10,000 trips per month were provided to

destinations such as health care facilities, congregate meal sites, adult day
care centers, and special education facilities. In addition, deliveries of
food for a "meals-on-wheels" program were made by CAR.

CAR's annual operating costs for this consolidated human services
transportation program averaged about $213,000. Funding was obtained from a

variety of federal, state, and local sources, including: Section 16(b)(2);
Titles III, VII (Older Americans Act), XIX, XX (Social Security Act);
Massachusetts Chapter 766; and CETA.

All information pertaining to CAR's daily operations (vehicle schedules,
maintenance and repair records, and operations reports; client trip requests)
and more permanent data (client record file) was compiled, recorded, and
updated manually, as is the case in most paratransit organizations. Invoices,
requests for funding, and periodic statistical reports were also prepared
manually by extracting information from paper files. The following
subsections provide an overview of these recording and reporting functions in

order to identify the specific types of information that CAR and other

paratransit agencies need to record and store, and the uses to which that
information is put in the management of paratransit operations.

1.1.2

Client Records

The client record file contains a permanent record of information about each
client or passenger who uses or has used a paratransit agency's services.
Included is information such as: name, address, phone number; birthdate;
passenger classification; Medicaid, Title XX, or other funding source
authorization or number; and any special needs or other comments.

In a manual system of recordkeeping, the client record file is usually stored
on cards similar to the one shown in Figure 1-1, and contains a record of each
trip taken by a client as well as his/her personal data. Records for new

1-1

E EH H NU PHONE 1 MALE/FEMALE

CASE CLOSED: REASON

NAME DATE

ADDRESS

MEOICAIO I

title XX # DATE EXPIRED

DATE If TRIP DATE 1 TRIP DATE 1 TRIP DATE 1 TRIP

1

1

FIGURE 1-1: SAMPLE CLIENT RECORD

1-2

clients are added to the file at the time of an initial trip request. In the
CAR system, all client records were updated at the conclusion of each day of
operations, so that current information on trips taken by each client was

available at all times.

The principal reasons for recording client trip and personal data are 1) to
form the basis for client-specific billing; 2) to supply client-specific
documentation for audit purposes; 3) to provide a monthly count of
unduplicated passengers for Section 16(b)(2) reports; and 4) to aid in the
preparation of driver itineraries.

1.1.3 Vehicle Scheduling

The process used for the manual scheduling of daily paratransit vehicle trips
is depicted in Figures 1-2, 1-3, and 1-4. In the CAR model, the scheduling
process follows one of two paths, depending on whether the trip is pre-
scheduled (a standing appointment usually between a client's home and a human
services agency activity center) or a dial-a-ride request.

In the pre-schedul ed mode (Figure 1-2), a trip request is received through a

program or agency or directly from a client. The dispatcher then follows the
steps listed below:

• Identify client and verify eligibility
• Determine trip date parameters: for example, trips for medical

purposes such as physical therapy or chemotherapy/radiation treatment
typically have specified start and end dates, and may need to meet
strict time requirements for arriving at the facility.

• If the client is new to the system, enter client data into the client
record file; i.e, fill out a client record card,

• Go to schedule process.

In the demand-responsive mode (Figure 1-3), an individual phones the
paratransit agency with a request for a one-time trip, and the preliminary
scheduling procedure is as follows:

• Identify client and verify eligibility
• Determine trip purpose: does the request fit the agency's priority

trip requirements (e.g., medical)?
• If client is a new user, fill out a client record card,

t Go to schedule process.

At this point in the construction of a vehicle schedule, the steps followed in

the pre-scheduled and dial-a-ride modes are identical (Figure 1-4):

t Determine passenger classification, e.g., elderly, elderly/handi-
capped, non-elderly/handicapped, non-elderly/non-handicapped

.

• Enter day of trip on dispatcher schedule or trip request form,

t Enter inbound origin, destination, and appointment time, if any.

• Determine approximate inbound pick-up time.
• Note any special equipment or assistance needed: does the client use a

wheelchair? Does he/she need assistance negotiating steps?

1-3

FIGURE 1-2: PRELIMINARY SCHEDULING PROCEDURES, PRE-SCHEDULED TRIPS

1-4

FIGURE 1-3: PRELIMINARY SCHEDULING PROCEDURES, DIAL-A-RIDE TRIPS

1-5

1-6

FIGURE

1-4:

MANUAL

PARATRANSIT

SCHEDULING

PROCESS

t Review schedules of vehicles assigned to appropriate zone for inbound
assignment.

t If possible, schedule trip; if not, rearrange vehicle schedules to
accommodate trip or arrange alternate day and/or time with client.

• Determine outbound destination and approximate pick-up time*.

t Review schedules of vehicles assigned to appropriate zone for outbound
assignment.

• If possible, schedule trip; if not, rearrange vehicle schedules to
accommodate trip or arrange alternate day and/or time with client.

• Enter trip data on vehicle schedule.

• Record trip data on client record card.

A sample vehicle schedule format is displayed in Figure 1-5. In the CAR
system, all vehicle schedules are photocopied at the end of the day so that
one copy can be given to the driver of each vehicle as an itinerary while the

original record remains on file at the dispatch center.

1.1.4 Vehicle Operating Statistics

In the CAR model, daily and weekly vehicle condition and mileage reports (see

Figure 1-6) are completed by each driver. These reports are used to collect
data pertaining to vehicle miles by contract or program (as required for

billing purposes), and the cost and quantity of gas and oil used. An attempt
was made on the part of CAR's management to minimize data collection by

vehicle operators, thereby allowing them to concentrate on providing safe and

effective transportation service for CAR's clients.

1.1.5 Client/Agency Billing

As do most paratransit agencies incurring costs of providing service that are
reimbursable on a client-specific basis, CAR tracked individual client trips
so as to be able to bill human service organizations accurately for the CAR
services utilized by each organization's clients. Therefore, monthly or
quarterly invoices were derived manually from the client record file.

Figure 1-7 is an example of an invoice for special education program trips
prepared using data contained in the client record file - in this case,
passenger-miles traveled based on the number of trips and the accumulated
mileage between the origins and destinations listed on each client's record.

On the basis of past service utilization, expected passenger-miles for the
upcoming quarter were calculated for each client whose trips were paid for by

the Cape Cod Collaborative. The town in which each client's trip originated
was noted. Passenger-miles for each town were summed. Finally, the costs of

providing this transportation service were allocated among the member towns in

proportion to each town's share of the total passenger-miles. For instance.

*Given the rural nature of the Cape Cod service area and CAR's operating
philosophy (guarantee every return trip, make all operating decisions as early
as possible, but remain flexible), the agency's practice was to book each
return trip at the time of the initial trip request.

1-7

CALL-A-RIOS or B.aai 3U cout;rr, zmc. nsC ing»*s scnamu

TIm CocUti X > Dropoff
P • Plek-Up

Ptraoa CodMt .1 Ildarl/C^^ P«v«)
B • lldarlj-tfandloappad

S''*-
a Moa-Ildarljr-^Midleappad

Progrm Cedati HC » Ha«lth C«r«
(Trip Purpoaa) NV • Sit* Nutritlos

^ - y •®a M«*l«-4n-Wh*als

^ ^ ^ * Spaelal Elucatlaa

^ ^ IT Spaolal Education
T OT • Croup Trip for tha

Plaid Trips
OT B Croup Trip for tha Sldarljr
AK Adult Cara
CL Dialysis

TIW 3

S
MANX AKD ASntESS

Oa U
FHOhB TRIP

PURPOSE

DESTII.ATIOH COtOCEXTS

I

•«

/

h 1 ,

' 0
U. 1.. I>1. .Ic’K.' A »

X

/< 1

¥ 1'
1

1

f X r* irr- «

i

1

w / — 1

a n V .ti » a

.

1

!

.A.:i 'i

«4 f

-* L
H y Kf*., - «j ' f •

!

1

U X h.r:-f /r:! i

4^ > /""
. f , , . (T^
J

i

I

\

1

1

r-

j— i

1
^

-

—-

.1. -f

-—

/Alls' 1’
. ,

*
• ^

'•

...

i':
'j'

:r rt

1

'•r iflF

V

t

£n' ,.1/Al lC —
(/

u

i

f

f

ll /4(-4 J3 >/ • IJ —T

- ti!

J L
1

f —
(-• - •-

\
r;

,

IL ^
. - # a 4 21

— 1 -

.

. ..

O /;
DATE

FIGURE 1-5: SAMPLE DAILY VEHICLE SCHEDULE

1-8

45M-3 1-9

FIGURE

1-6:

SAMPLE

VEHICLE

OPERATIONS

REPORT

1-10

EXHIBIT III-A-4
(CONTINUED)

A ' * i 1 1 ^ c r i r r e T. ^ ^ r • arc = svr.:e.‘

!

;e< frr Fc"j r*.r --a: ter. ly78

Expec*. ed 2-v.ay Total 4th
Procr am <ith Qtr. r'iles Quarter Town

Days ter Dav Miles

Joe K. nVcH 12 51 612 Wareham
David C. lAV/H 65 87 5655 War eham

Sly D. MS/CE 12 18 216 Bourne
Linda B. !»V/H 65 70 4550 Bourne
Shontell S N-H U 27 297 Ma shpee

Betty 3. '*Vh 65 35 2275 V.ashpee

Bcrbara C. ?v 65 57 3705 Barnstable
Reger 3. PV 65 55 3575 Barnstable
Calvin M. ?v 65 43 2795 Barnstable
Barbara S. PV 65 43 2795 Barnstable

Joyce H. PV 65 39 2535 Barnstable
Linda R. PV 65 69 4^85 YarrcJth
Harry S. PV 65 71 4615 Yar.Tiouth

Scott G. rv./H 65 22 1430 Yarncuth
Mary 0. :w/H 65 20 1500 Yarmouth
Scott S. 65 14 910 Yarmouth
Alex F, r*v/H 65 16.4 1066 Yarmouth
N'ancy G, NV.'/H 65 8.4 546 Yarrnouth

Brian K. r.vp/H 12 24 2S8 Yarro uth

Barbara D. r^'P/H 12 24 288 Yarmouth

Diane L. IhF/H 12 24 288 Yarmouth

Terry 0. 65 14.4 936 Yarmouth

Joyce K, M.'/O 65 43.4 2821 Dennis

Mary C. rv;/H 65 38 2470 Dennis

Carrol R* 65 28 1820 Dennis

Phillip J. NN/H 65 20.8 1352 Dennis

Frank D* lM/0 65 27.8 1807 Chatham

Ann D. •M’/O 65 20.2 1313 Chatham
Jerry W, ^M/0 65 16 1C40 Chatham

FIGURE 1-7: SAMPLE AGENCY INVOICE (cont'd)

1-11

EXHIBIT III-A-4
(CONCLUDED)

Cape Cod Collaborative

Cost Allocation - 4th Quarter

Passenger-Miles Proportion of

Town 4th Qtr. Total Miles Cost

Wareham 6,267.0 0.108 $1,369.44

Bourne 4,766.0 0.032 1,039.76

M.ashpee 2,572.0 0.044 557.92

Barnstable 15,405.0 0.267 3,385.56

Yarmouth 16,152.0 0.280 3,550.40

Dennis 8,463.0 0.147 1,863.96

Chatham 4,160.0 0.072 912.96

TOTALS 57,785.0 1.000 $12,680.00

• Six passengers will be transported for only the first two

weeks of the fourth quarter due to the completion of the school

year* The program cost for this summer schedule is estimated to

be S12(680.00 or 22i per passenger-mile. Total program cost for

the FY78 program is S65, 824.58.

• The increased proportion of cost for the Town of Yarmouth
reflects the relocation of a former Warehara passenger and the
addition of one passenger.

FIGURE 1-7: SAMPLE AGENCY INVOICE (concTd)

1-12

Wareham, with 10.8% of the total passenger-miles, was assessed 10.8% of the
total cost of providing this transportation service, or $1,369.

This invoice is but one example of the various billing formats and procedures
specified contractually by the administrators of CAR's different funding
sources. Transportation services provided under some programs were
reimbursable at a negotiated rate per vehicle hour (nutrition program) or per
unit cost of authorized service (Medicaid Title XX trips). Other funding
sources provided operating assistance to CAR in grant form (Title III).

Complicating the billing process further were conflicts between the client
eligibility and authorization policies of various funding sources and the
differences in the billing cycles of the agencies involved. Given all these
billing complexities, maintenance of an up-to-date client record file
containing accurate information on each client and the details of his/her
utilization of CAR's services was absolutely essential to the smooth
administrative and financial functioning of the organization.

1.1.6 Budget Preparation

It is important to note at the outset that the brief review of CAR's budgeting
process presented in this subsection focuses on the types of data required to
produce a paratransit agency budget, rather than CAR's particular budgeting
techniques or philosophy.

The preparation of CAR's annual combined program operating budget began with a

mapping of each vehicle's expected schedule by time of day and program, as
illustrated below in Figure 1-8.

VEHICLE NO.

A1

A2

A3

A4

TIME OF DAY
00<b

O

9-10
1

10-11

-R HEALTH CA

11-12

RE

12-1 1-2 2-3

ADUL

34

.TDAY

4-5

CARE

5-6

SHELTERED
WORKSHOPS D-R I- EALTH CARE

D- R HEALTH
CARE THERAPY

ADUL'
CAf

r DAY
RE DIAL YSIS D- R HEAL.TH CAIRE

FIGURE 1-8. HOURLY VEHICLE UTILIZATION CHART BY PROGRAM

This chart was then collapsed into a daily/weekly utilization chart, such as
the one shown in Figure 1-9. The vehicle utilization chart represented an

analysis of the characteristics of present and prospective programs to

determine vehicle availability, the spatial relationships between clients and
service facilities, and required service levels (in terms of person trips) for
each. In addition to serving as a planning tool for maximizing vehicle

1-13

EXHIBIT

II

-E-

VEHICLE

OTIllZATlON

CHART

(Continued)

• • •

t t t K • X
> >

• _ > > >> >
• w w K m X

£ *5 e <r 9

o o O X Xo
X X

:«niApo<^) X X

•dto-iio X X a

(uu)soe) X
Te3ip»vj

•dfo-ijo X X
X X

sdotisX'^OM a a
p»j»>I«qS

X • n X •
o

V) in

3 3
«D

• • • r«
a

Ui UJ
o

uoT):
<
CL • e •

<
Oi CM

</)

n CM
in

X

sisAittn • X •
C4 X

X
rx

X
AtQ
iinpv

CM «
X

n X cx
9m

X X a
X

•JtO
X

<n « •
X X •

U •n
CD

u X

• X m
c e e c e e e 9 e e e e 9 e io
*• > > > > > > _ > > > > > _
& * ^ si si Ic ^ si si • M^ X^ X^ X^ • * ”P m

w * 8
% «>

* 8
» —

* 8
•t — « -«

2|
% ««

* 8
• -•

m u X •
• s

X *
e? !i

X •*
o

• c
« u
% •
«• a

= 8
m w
S c

• e> 9 e> 9 a » 9 0> 9 >?§ M e a * eTi « o« • a « M C 0» 9 X c
13

I? <s r (S r & r 'd : s

:

^ s is: £

:

o S> •» cS r
o c> «*

<

u «

i

<>! i> S
a

P* J
0

f*» •

of •

o w n a

r 5 — s: : S: = &s 6c; !5 ^ r» CM^ — f* CM9 — C" <^ r»
f«* —9 —

>

»
W— ^ CM r» e CM r> 2 n CM rt
r e.u < < < < « m a m a a u U U u

1-14

FIGURE

1-9:

SAMPLE

WEEKLY

VEHICLE

UTILIZATION

CHART

BY

PROGRAM

utilization and allocating driver time, this chart provided a mechanism
through which to allocate indirect costs and mul ti-program direct costs to

funding sources in the budgeting process.

Based on the vehicle utilization chart, direct costs by program (e.g., health
care, nutrition) were estimated. Indirect costs were then estimated and

allocated among programs according to each program's share of total direct
costs. Finally, estimated income by program was determined.

In order to construct such a budget, CAR utilized extensive data pertaining to
vehicle utilization, service utilization, income, and expenditures by program.

1.1.7 Reporting Requirements and Program Evaluation

As an operator of vehicles purchased with Section 16(b)(2) funds, CAR was
required to complete and submit the statistical report displayed in Figure
1-10 to the Massachusetts Executive Office of Transportation and Construction
(EOTC) every month. This report is a typical example of the data collection
and reporting requirements placed on paratransit agencies by funding sources
for monitoring and evaluation purposes.

1.2 MICROCOMPUTER APPLICATIONS FOR PARATRANSIT

As evidenced in the preceding sections, information management is an essential
function in the delivery of paratransit service. Complete and accurate
records must be maintained on passengers, trips, and vehicles in order to: 1)

provide service to clients, and 2) facilitate the agency's accounting and

financial management activities.

Because of the amount of information to be maintained in the data base of a

typical paratransit organization such as CAR, and because of the inter-
relationships that exist between data files, one of the most useful pieces of
microcomputer software for an organization to acquire is a relational data
base management system (DBMS). Other valuable computing tools are spread-
sheet, word processing and graphics packages. The organization of these four
software packages into a system of microcomputer-based paratransit management
applications is discussed in more detail in the following subsections.

1.2.1 Conceptual Design

A relational DBMS, as opposed to a file management system, treats data as if
it were stored in tabular form, recognizing the relationships between data
items and data sets. Information is contained in fields (such as a client's
name); records consist of fields that are related to each other (a client's
name, address, phone number, passenger classification, ID number, and so

forth). Files are made up of records that share the same field structure
(i.e., a paratransit agency's master client file). A collection of related
files is a data base (i.e,, master client file, vehicle schedule file, vehicle
operations file, etc.).

In any data base, different files may contain common fields, or fields that
are dependent on each other for definition. A relational DBMS is capable of
manipulating fields and files in two unique ways, due to its tabular

1-15

EXHIBIT III-B-1
Call»Ai>Rida of Bamat^l* Oountj, lao,

:»mLr statistical ripoht
Hoalth Car* and Lutritioa Tran* pore ctioa Sorvieas

Pr«p*r*d MoatH, T**r y?7^

I. yggnr amvicE statistics by fuwdimc socrcs
^ S*«lth Car* Transportaction x,

1. ^UHfiUPLICATSD pas**ng*rs this month
2, # Hi» pa*a*a4«r* this month

faar-to-dsct* ISnXJPLICAXEQ paasan^rs
UtnXJPUCATSD aldarly this month

3* ^ UKSUPLICATZD 8 lderl,y~handieapp*d this month
6. f aslXIFLICATSD non-aldarly handicapped thia month
Sutrltion Transport stion
1. .V QKIUJTLICAT^ passsn^rs this month
2. V New passsn^rs this month
2, fr Tsar-to-data IRrDUPLICATSD passentjers

4. UnBOPLICATED elderly this month

5. if UNDUPLICATED eldarly-handicapoad this month

H. TRSQDgCT 07 SSHVICS BY TUI.'DINC SOURCE
A* Hsalth Care Transportation T. Ill XIX

1. rf Of one-way medical trips this month 734 SCC
2. Of elderly medical trips this month 33?
3. f Of eldarly-haidicanoed medical trips this month 30g
4. # Of non-eldarly handicapped med. trips this month 3 ifiz
5 . # Of no-ehows this month
6.

7.

III XIX XX TCTAL
!S9 7/

lif «L0 m. .2Z JSI^
J2SLH JS. 6 iia.

-L -IS -2. 32.

a/*y
2 /

370
l*i(t

if Of not poeeible trips this month
tf of THi^ r*3...3TV

No. of Possen.-rera

TTy
No. of one-way trips

Q-y
39 S-/Q
a n- /5

/ z t(*-2Q
/ 7 2/ r

TRIP OniOINS
Bomst.ible Moshpae <^S
Bourne 2C2. Orisons i
Brewetar tH P 'town 0
Chatham 0 Sandwich /jS-

Sennia 105- Truro 0
Eosthom 0 Viellfleet 0
Palmouth 3^5 Tarmouth m
Harwich

3. Nutrition Transportation
1. r/ Of conjrregita nutrition trips this month
2-. i'.' Of shopping ossistanca trips this month

3. f.' Of home delivary trips thia month
4« Of othar trips thia month

5 . f.‘ Of no-ehow* this month

£Mi

111, VanCLS STATISTICS

1, Total milau driven II
j
i'21. 2

2« Avero^ miles drivon per vehicle
per day i 2$.^ ^

3. Total vehicle-hours <ltC*i,0

;.i)'n:iTIQK

Cl too
I

Food Dei*
4i,ygV./

5?.d(» *1*1. 2i
•iU7. 3 ,39.5, 7

FIGURE 1-10: SAMPLE STATISTICAL REPORT

1-16

organization of data. First, separate files containing common fields can be

merged, allowing access to a great deal of related data at one time. For

instance, a daily vehicle operations file and a vehicle maintenance and repair
file, each including a field for vehicle ID number, could be joined in order
to determine operating cost by vehicle. Or, a vehicle schedule file

containing a client ID number field could be merged with the master client
file, also containing client ID number, so that detailed information on an

individual client and his/her trips could be used for billing purposes.

Second, changing a field in one file in a relational DBMS automatically causes
all identical fields in other files to be changed accordingly. Thus, changing
or updating a field that appears in several files, such as client ID number,
can be accomplished with a single command. For more detailed information on

the different types of data base management software, see Appendix A,

"Selecting a Data Base Manager".

Automation of the paratransit agency management functions described in Section
2.0 should be centered around relational DBMS files and applications, but

would also involve the development of spreadsheet, word processing, and

graphics.

The overall organization of a microcomputer-based automated system is

illustrated in Figure 1-11, which indicates the primary files to be developed
for use by each software component. The ideal automated system would use an

integrated software package whose relational DBMS, spreadsheet, word
processing, and graphics programs each generate files that can be read and
utilized by the other programs with the least amount of user intervention.
(See Appendix A for the pros and cons of currently available levels of

integration in microcomputer software.)

1.2.2 Relational DBMS Files and Applications

The files to be created and maintained in the relational DBMS are shown in

Figure 1-11. They include:

• Master Client File: a list of all present and past paratransit
service users, including such pertinent data as address, phone number,
age, passenger classification, Medicaid number, human services agency
authorization, and special instructions.

• Master Vehicle File : a record of all vehicles purchased, including
license number; serial number; year, make, and model; engine size;
owner; conversion information; and purchase date.

• Pre-scheduled Trips File: a "dummy" file for a day(s) of pre-
scheduled trips tor each vehicle, which can be edited (to alter
individual vehicle assignments and service date) and merged with the
active data base to be used in the preparation of daily vehicle
schedules.

• Daily (real time) Vehicle Schedule File : a record of daily vehicle
trips, including vehicle and client ID numbers, scheduled pick-up and
drop-off times, origin and destination addresses, passenger
classification, trip purpose, and special needs.

1-17

RELATIONAL

DATABASE

APPLICATIONS

SPREADSHEET

APPLICATIONS

1-18

FIGURE

1-11:

CONCEPTUAL

DESIGN

OF

MICROCOMPUTER

APPLICATIONS

• Daily Vehicle Operations File : daily operating statistics for each
vehicle in-service, including driver and vehicle ID numbers; starting
and ending mileage; start time and end time; quantity and cost of
fuel, oil, coolant, and transmission fluid used; necessary repairs or
road calls; and contract vehicle hours. The vehicle operations report
is filled out by each driver during his/her daily run and entered into
the data base later.

• Daily Vehicle Maintenance and Repair File: a record of maintenance
and repairs performed on each vehicle, including a description of work
done, cost of parts and labor, and vendor.

These files would be used alone and in combination to produce driver
itineraries, client/agency invoices, and management tools such as operations
reports, vehicle maintenance reports, and ridership reports, as described
below.

1.2. 2.1 Vehicle Scheduling

Figure 1-12 depicts the various DBMS files that would be used to create daily
vehicle schedules.

First, the scheduler creates or edits the pre-scheduled trips file for the
particular day/month/year, and adds the pre-scheduled trips for that date to
the vehicle schedule file. Then, in an iterative process at appropriate
intervals, he/she reviews the schedules of suitable vehicles and adds
real-time dial-a-ride trip requests for the service date to the vehicle
schedule file. Information on new clients is added to the master client file,
and information from the updated file on both current and new clients is added
to the vehicle schedule file. The next step is to prepare daily individual
vehicle schedule reports for the service date from the vehicle schedule file,
a copy of which is given to the driver to serve as his/her itinerary. At the
conclusion of the day's operations, the scheduler updates, or edits, the
vehicle schedule file for that day.

It is important to note that the assignment of trips to each vehicle is still
done by the scheduler. In this system, the microcomputer software is used
only to handle the information necessary for vehicle scheduling quickly and
efficiently, thereby making the scheduler's job easier.

1.2. 2. 2 Billing

Figure 1-13 illustrates the interaction of DBMS files to produce client or
agency invoices. Using the data listed below from each file, the paratransit
agency's financial management staff would be able to generate standard
invoices for prescribed periods (e.g. monthly) for program activity in

accordance with contractual billing rates.

1-19

CRT
SCREEN
FORMS &
REPORT

DATA
ENTRY

LOOK UP REGULAR
CLIENT INFO.
(WINDOW?)

ADD NEW CLIENT
INFO.

f PRE-SCHED,/
TRIPS

V ""
V

1

CLIENT
FILE

DAILY
VEHICLE
SCHEDULE

COMMON ORIGINS/
DEST. CODES

LOCATION/
MILEAGE TABLES

SCHEDULING PROCEDURE:

(1} Scheduler creates/edits a PRE-SCHED. TRIPS FILE for date: yr/mo/day

(J) Scheduler adds PRE-SCHED. TRIPS for date to VEH.SCHED. FILE

At appropriate intervals, scheduler adds D-A-R TRIPS to VEH.SCHED. for date: yr/mo/day

At appropriate intervals, scheduler prepares DAILY VEH. SCHED. REPORTS (for ea. veh.)

for date (copy to driver)

@ At conclusion of day of operation, scheduler updates/edits VEH. SCHED. FILE for date.

FIGURE 1-12: AUTOMATED VEHICLE SCHEDULING PROCEDURE

1-20

• Provides financial mgmt. staff with standardized reports (invoices) for prescribed periods

for program activity in accordance with contractual billing rates.

FIGURE 1-13: AUTOMATED CLIENT/AGENCY BILLING PROCEDURE

1-21

• Master Client File: client name, address, and ID number; Title XIX,
XX, Medicaid, or other agency number,

• Vehicle Schedule File: client ID number, origin and destination, trip
purpose, date of trip.

• Vehicle Operations File: contract vehicle hours, vehicle miles, date,

• Program Constants File: origin/destination codes, mileage, trip
purpose codes.

1.2. 2.3 Report Generation

Figures 1-14 through 1-17 provide examples of the ways in which the relational
DBMS files can be used to combine system data in meaningful ways to support
the paratransit manager's decision-making capabilities and reporting
requi rements.

In Figures 1-14 and 1-15, the daily vehicle operations file and the daily
vehicle maintenance and repair file, respectively, are compiled and organized
into daily, monthly, year-to-date, or annual overall system reports.

As shown in Figure 1-16, data from the daily vehicle operations file, the
vehicle master file, and the daily vehicle maintenance and repair file can be

combined to form a fleet operations report for a daily, monthly, year-to-date
or annual time frame.

A passenger operations or ridership report can be generated using data from
the daily vehicle operations file and the daily vehicle schedule file, again
on a daily, monthly, year-to-date or annual basis (Figure 1-17).

1.2.3 Spreadsheet Files and Applications

Microcomputer spreadsheet programs are effective financial management tools.
The most useful generic application is in the area of budget preparation and
management. The ability of spreadsheets to instantly recalculate an array of
values based on a change in one value enables a manager to rapidly update
budgetary figures, and to conduct an endless series of "what if" exercises
with budgetary projections. Most spreadsheet packages also contain various
pre-formatted accounting applications such as payroll; income tax; income and
expense statements; cash flow assessment; and accounts payable and receivable.

1.2.4 Word Processing and Graphics Files and Applications

Depending on the level of integration existing between the automated system's
relational DBMS, spreadsheet, word processing, and graphics programs, reports
and presentation materials can be generated from a paratransit agency's
operations files with varying degrees of user intervention.

1-22

• Allows ops. mgmt. person to build, edit, and generate reports from (DAILY) VEH. OPS. FILE

FIGURE 1-14: AUTOMATED VEHICLE OPERATIONS REPORT

1-23

MAINT./REPAIR CODES
VENDOR CODES

- DAILY
- MONTHLY
- Y-T-D
- ANNUAL

Maint. person(s) can build, edit, generate report(s) from VEHICLE MAINT. & REPAIR FILE

FIGURE 1-15: AUTOMATED VEHICLE MAINTENANCE AND REPAIR REPORT

1-24

CRT
SCREEN
REPORT

/ VEHICLE
/ (DAILY)
I OPS
\ FILE

VEHICLE
(DAILY)
SCHED
FILE

PASSENGER
OPERATIONS

REPORT

DAILY
MONTHLY
Y-T-D

ANNUAL

• Ops. mgmt. person can generate (daily, monthly, Y-T-D, annual) repwirts on ridership

FIGURE 1-16: AUTOMATED PASSENGER OPERATIONS REPORT

• Operations mgmt. person can generate (daily, monthly, Y-T-D, annual) reports on ridership

FIGURE 1-17: AUTOMATED FLEET OPERATIONS REPORT

1-26

At the highest level of integration, provided by a fully integrated software
package, information from data files (such as the daily vehicle schedule file,

for instance) can be transferred to the graphics program for organization and
graphic presentation. Next, the illustrations can be combined with
descriptive text in the word processing program to produce a complete report
on vehicle utilization by transportation program for review by funding source
administrators or board members.

At the lowest level of integration, provided by separate relational DBMS,
spreadsheet, word processing, and graphics programs that are capable of

reading and writing files in the same standard format, generation of
descriptive graphics with accompanying text requires some amount of user
intervention to convert files into the standard format.

The specific files to be maintained in the word processing and graphics
programs would depend on the individual paratransit agency's particular
reporting needs, but some typical examples are listed below:

Word Processing

• Correspondence File
• Standard Report Format File
• Miscellaneous File

Graphics

• Passenger Operations Graphics File
• Fleet Operations Graphics File

• Financial Management Graphics File

• Program Evaluation Graphics File

1-27

fnfivltw yfttti

"

ft ^rtj>t*j#vpd^rtJ Ya Tftvwf 9/<J

^e:^} y» Ub «)i»1
,e: ’'1 Jnj»T yiii»w «c r^« r . -*-v .>«r. nAf^ftWflOYftT

tf\9 YbY flmttftnq 9d fl»5 (9:>ftfti80t, loj ,,

- %.y%^. ^jUsJiS^SiA 'rt*sV .nili’tiJftflefino :>trtu«'W

"iW

'
... i - »

' " '
' "

''
.

S ,^r iftao>3^§sA

— .1 ?. ' Tl . -I aL . .. ^ A T .i>*& < n i V V •
- W *f~ u r ft-tA ATp 'TtPoV»A CT'U J r>^» * C^IIW ,f ^

w w w — - - - - ’- » ^ 1
^ ‘ '3

2.0 AUTOMATING THE CAR DATA BASE

2.1 INTRODUCTION

This chapter describes the process of using data management and other
applications software to automate the management functions of a paratransit
agency. The focus is on the data base management software (DBMS). This
section discusses the selection of software products; the instructional
approach taken in the chapter; the user environment; and the organization of
the chapter.

2.1.1 Selection of Software

For the task of automating the CAR data base we have selected Microrim's
relational data base manager R:base 4000. As discussed in Section 1.0, the
advantage of a relational data base compared to a traditional file management
system is the capability of "relating" different files. For example, data
from two different files can be joined together to create a third file. Also,
data records in separate files with common fields of information can be

updated or deleted simultaneously.

While we are highly enthusiastic about the potential applications of
relational data managers to transit management, this document does not in any
way constitute an endorsement of a specific product . In using Ribase 4000 to

automate the case study data base, we engaged in a learning process in which
we discovered the product's strengths and weaknesses. We discuss both
candidly in this manual and provide suggestions for overcoming the weaknesses
and taking advantage of the strengths. Funding limitations prohibited
similarly intense examinations of competitive products.

The selection of a data base manager is not a decision to be taken lightly.
They can cost anywhere from $400 to $800 and there is no money back
guarantee. The software industry is highly volatile. New, innovative
products are announced almost weekly. Products are sent into the marketplace
with bugs which do not become apparent until field testing. Each product has
unique strengths and weaknesses which require that the selection process be

responsive to the specific needs of the transit agency.

We strongly urge any transit agency interested in using a data base manager to
conduct their own selection process and evaluation. To assist agencies in

doing so, we have provided in Appendix A of this manual suggestions for how to
conduct a software procurement process; criteria to utilize in evaluating data
base management software; and information on a variety of competitive products
which you might want to consider. While this document is clearly written to a

specific piece of software (Ribase 4000), we believe that the generic approach
described herein will be helpful to users interested in applying any data base
management software to paratransit management.

In addition to the data base management software itself, this section will
also discuss the integration of data base management with other software
applications such as spreadsheets, word processing, and graphics.

2-1

For these other functions, we have used Perfect Calc, Perfect Writer, and Fast
Graphs. Again, our use of these products does not constitute an endorsement
over the many similar products in the marketplace. In addition, the use of
this software in conjunction with R:base 4000 does not constitute a

recommendation as to the effectiveness of these products as an integrated
package. To the contrary. Perfect Calc is not one of Rrbase's recommended
spreadsheets and integration is in fact cumbersome.

2.1.2 Instructional Approach

The purpose of this chapter is to assist the professional transit manager in

applying a data base management system to his or her own management problems.
It is NOT a replacement for the manual and tutorial which accompanies the
software. Rather, it is intended to function as a bridge between the manager
and the software manual. Software manuals are written for generic
applications. This manual is written for the sole purpose of applying Rrbase
4000 to paratransit management. In doing so, we provide both a conceptual
framework and specific instructions for using Rrbase 4000. These instructions
are intended as examples and are not all inclusive. We have not replicated
the Rrbase manual. We do think we have made it easier to use and to apply to
this specific function.

The authors of this document are transit professionals who have learned to use
applications software to solve transit management problems. We are NOT
computer professionals. We have written this manual for people like us.

In writing instructions for Rrbase 4000, we assume that the audience has

little or no experience in the use of data base management software. We do

assume, however, that the user is familiar with common data processing terms
and with the operation of their hardware system. We hope that in combination,
this manual and the Rrbase manual will enable a transit manager to perform the

basic functions of Rrbase 4000. Some of the more complex functions may
require greater data processing expertise. In any event, the user will be on

much firmer ground in understanding the functions which Rrbase can perform,
and working with a data processing professional in tailoring the system to

their needs.

The focus of this document is clearly on the application of data base
management software. This type of software is the most complex to use among
the most widely applied software. Therefore, our treatment of the other
applications software discussed in this manual (spreadsheets, word processing
and graphics) is more cursory and assumes that the basics of using these
programs can be mastered by following the manuals and tutorials which
accompany them. Somewhat more detail is provided on spreadsheets than on the
other two applications. Our emphasis will be on the application of this

software in conjunction with a data base manager.

A final point which needs emphasis is that the case study data should be

viewed as hypothetical. The reasons for using data from an actual transit

system were to develop a realistic case study, and to avoid the necessity of

developing a data base from scratch. This data dates from 1979 and was

generated by a unique transit system operating in a unique environment. The

user should concentrate on the applications, and not the data.

2-2

2.1.3 User Environment

Rrbase is available for use on a variety of hardware and operating systems.
Operating systems include the following:

• MS-DOS Release 1.1 (or higher)
• PC-DOS Release 1.1 (or higher)

• CTOS Release 8.0 (or higher)
• BIOS Release 8.0 (or higher)

R:base requires 256K bytes of memory for operation. Hardware with 128K can be
easily expanded at reasonable cost to 256K by means of expansion boards. We

developed this prototype on a Columbia VP microcomputer using MS-DOS 2.0.

Rrbase can utilize any 80 or 132 column ASCII printer compatible with your
hardware. We recommend a printer with a 132 column capability given the types
of reports you are likely to produce. The printer which we employed is an 80-

column printer with an optional 132-column small type. This accounts for the
different size printing in some of our outputs.

One of the major selling points of Rrbase is its tremendous capacity
potential. This is illustrated in Table 2-1.

TABLE 2-1. DATA BASE SPECIFICATIONS

Maximum number of files per data base
Maximum number of fields per data base
Maximum record size

Maximum records per file
Maximum records per data base
Maximum command line input

40
400

1530 characters
2.5 billion*
100 billion*

1600 characters

*or limited by the file size of your operating system

It is the rare paratransit system indeed which would run up against the limits
of Rrbase's theoretical capacity. Of more practical concern is how to tap
this capacity. This prototype was developed using two floppy disk drives.
Since the Rrbase diskette must occupy one drive at all times, and has limited
writing space, the user is limited to the capacity of a single diskette at any
one time. We found this capacity sufficient to build a one-week data base for
a five-vehicle system. It might have been possible to go as high as two
weeks. Ideally, records should be stored in monthly increments to coincide
with typical scheduling, invoicing, and recordkeeping procedures. This would
not be feasible using Rrbase for more than a 1-3 vehicle system (depending on

ridership levels).

There are two solutions to this problem. One is to store data on multiple
floppy disks. We found this process to be cumbersome and do not recommend
it. The alternative and recommended solution is to use a hard disk. A
recommended hard disk has a capacity of 20,000,000 (20 megabytes) bytes of

memory compared to 360,000 for a floppy disk. While expensive, prices are

2-3

falling and represent a modest increment to the overall cost of your system.
In the course of this manual, we do provide guidance on operating with floppy
disks. Appendix B provides more detailed space management instructions.

Another of Rrbase's advantages is its user friendliness. Most data entry can
be accomplished through a series of prompts which clearly call for specific
pieces of data. Many user decision points provide menus of clearly defined
choices (hence, the term menu-driven). Commands can be given in standard (if

somewhat stilted) English sentences.

Due to these features, R:base can literally be taken off-the-shelf and used as
is. However, transit systems with a large number of data entry clerks may
desire additional customization to further simplify and standardize data

entry. An example of customization is provided in Appendix C.

This Manual is based on R:base 4000 version 1.01. However, during the latter
stages of this project (April 1984), an updated version (1.11) was issued by

the manufacturer. The new version is completely compatible with the version
used in this Manual. It also includes several improvements and enhancements.
The customizing example used in Appendix C is based on the newer version as

these features were not available in the old version. In addition. Appendix F

provides a brief description of other program improvements.

2.1.4 Organization of Chapter

The remainder of this chapter is organized into four parts. Section 2.2
describes how to begin working with R:base and setting up a data base.
Section 2.3 provides a description of how to use R:base to accomplish the

day-to-day scheduling function. Section 2.4 explains how to generate
end-of-the-month reports. Section 2.5 discusses the application of

spreadsheet, word processing, and graphics software.

Throughout this chapter, examples are displayed of screen forms, command
formats, and reports. Appendix D contains all such formats, illustrating how

to set-up an entire data base for paratransit management. Appendix E contains
blank copies of format sheets for reproduction and use in your own agency.

2.2 USING R:BASE TO SET-UP A DATA BASE

This section provides information on the following:

• The organization of the R:base manual
§ On-Screen Help provided by Ribase

• The structure of Ribase
• Conceptualizing a Data Base

t Constructing a Data Base

• Entering Data

2-4

Several conventions are followed throughout the remainder of the manual.
Information which must be input into the computer by the user appears either
within a figure or in quotation marks. Except for one occasion which is

clearly distinguished, the user does not input quotation marks. They are

present for clarification only. If a generic term is used to which the user

must apply a specific value (i.e., attribute name), the generic term is

underlined. Information which the user may optionally input appears in

parentheses. Computer-generated responses which will appear on the user's
screen are typed in bold face.

2.2.1 The R:base Manual

The R:base Manual has several important features of which the user should be

aware at the start of the process. These include the following:

• A tutorial provides both written documentation and a diskette which
takes the user through the development of a small data base. This

tutorial is available separately for a small fee and provides the user
with a good sense of the operation of R:base. The diskette contains a

small data base on which the user performs a series of functions. One
weakness in the tutorial is that the example does not complete a full

cycle back to the starting point. Thus, a second employee would not

be able to simply pick it up and run through it from the start. The

initial user must acquire sufficient familiarity with R:base to return
the data base to its original format for others to use.

• An insert at the front of the manual discusses quirks in the software
and changes which have been made since the last complete update of the

manual. We recommend that the user write these changes directly into

the body of the text.

• The body of the manual containing the following sections:

- Introduction
- Data Base Structure
- Data Input
- Data Inquiry
- Reports
- Data Modification
- Relational Operations
- Transportability
- Customization

• An appendix providing an extremely useful summary of R:base commands.

• An appendix containing a glossary of commonly used terms.

• An appendix providing explanations of both generic and command-
specific error messages.

• An appendix providing instructions on the use of the RBEDIT function
for generating and editing ASCII command and data files.

2-5

• An appendix containing instructions for starting and installing Ribase
under a specific operating system.

• An index.

2.2.2 On-Screen Help

In addition to its extensive written documentation, R:base also contains two
on-screen assistance formats. These are the "help" and "prompt" modes. The
help mode provides on-screen descriptions by command. Prompt is designed to
assist the user in formatting commands and data entry. Section 2.2.3
describes how to access these modes.

We found that these modes are helpful for the new user. However, after two
weeks of intensive usage, we found that the "help" mode had very little to
tell us that we didn't already know (which isn't to say that we weren't having
problems!). We also found the "prompt" mode to be a cumbersome method of data
definition and entry compared to other modes which will be discussed below.

This was particularly true of large (yet typical) files.

2.2.3 How R:base Works

2. 2. 3.1 Structure

There are four key terms involved in understanding the structure of Rrbase:

• Data Base
t Relation (file)

• Attribute (field)
• Row (record)

These elements are displayed graphically in Figure 2-1.

The basic unit of organization is the data base. All related information must
be housed within a single data base ! There is no interaction between
different data bases. For most paratransit agencies, it should be possible to
house all related data in one data base, given that a single data base can
hold 100 billion records in 40 separate files.

DATA BASE

Relation #1

Attribute #1 Attribute #2

row #1

row #2

Relation #2

Attribute #1 Attribute #2

row #1

row #2

FIGURE 2-1. THE STRUCTURE OF R:BASE 4000

2-6

A relation is synonymous with a data file. A single relation contains a set

of closely interrelated data which the user would file together and keep

separate from other information in a manual system. Examples include a client
file and a vehicle schedule file. Each R:base data base can contain up to 40
rel ations.

An attribute is synonymous with a single field of data in a relation (file).
For example, client ID number and last name would be typical attributes
(fields) in a master client relation (file). Each data base can contain up to
400 attributes. Each attribute can be associated with more than one relation
permitting integration and update across relations (files). This is a major
advantage over the file manager type of software.

A row is a single data record across a number of attributes in a relation.
For example, all the data in the master client relation pertaining to any one
client constitutes a row. R:base has a theoretical capacity of 2.5 billion
rows per relation, and 100 billion rows per data base.

2. 2. 3. 2 Entering/Exiting

Entering R:base requires two distinct actions (which are contained on 2

separate diskettes in the floppy version). Type "rbase" in response to your
operating system prompt. The rbase logo (a giant "R") will appear on the

screen with instructions to insert the second diskette and then press any

key. This will cause the program to load. When the program has loaded, you
will receive the R:base prompt shown in Figure 2-2.

R>

FIGURE 2-2. R:BASE PROMPT

To exit R:base, simply type "exit" in response to the Rrbase prompt. This
will return you to the disk operating system. No command is necessary to save
input. All input is automatically written to disk and saved.

2. 2. 3.3 Modes

Once inside R:base, you have the option of entering one of four special
function modes, or of remaining in the main R:base module. The four special
modes are as follows:

• Help: The help mode provides on-screen instructions for the operation
of R:base. To enter, type "help" for an overview of all R:base
commands, or "help command name " for instructions regarding a specific

command

.

2-7

• Prompt : The prompt mode provides menu-driven choices for performing
R:base functions. To enter, type "prompt" for a listing of all

commands, or "prompt command name " for a specific command prompt,

• Define: The define mode must be entered to establish or modify your
data base. When establishing a new data base, enter "define data base
name "

. When modifying an existing data base which you are already
inside, simply enter "define". A detailed description of the process
for establishing a data base is contained in Section 2.2.5.

• Load: The load mode is one of four methods for entering data into
K:base. We found it to be highly inefficient except for very small

data files. We will focus on what we consider to be the preferred
method of data loading in Section 2.2.6. To enter, type "load".

Upon receiving the appropriate entrance command, R:base will respond with a

new prompt which will be the first letter of the mode you have entered. Thus,
users can always tell what mode they are in. Figure 2-3 displays the possible
R:base prompts. To leave a mode and return to the general R:base system, type
"end", (Note that to leave a mode, you type "end". To leave R:base entirely,
you "exit"

.

)

R> (general R:base system)
H> (help)

P> (prompt)

D> (define)
L> (load)

FIGURE 2-3. R:BASE MODE PROMPTS

2. 2. 3.4 Editing and Syntax Messages

You can use your screen editor to correct typing mistakes. An incorrectly
entered command will receive a syntax message displaying the correct command
format as shown in Figure 2-4.

SYNTAX

The syntax for the SELECT command is:

SELECT (attnamel attname 2 ...) FROM rel name (SORTED BY ...) (WHERE)

Attribute types may have "=s" appended for summations or "n" when
specifying a display width

FIGURE 2-4. SYNTAX MESSAGE

The syntax message will be followed by the appropriate prompt to enable you to
resume input. We did find on a few occasions that grievous input errors were

2-8

unrecognizable to the syntax error response system and bombed out the

program. While no data was lost, it was necessary to reload the program and

start again.

2. 2. 3. 5 Special Functions

There are several functions with which the user will need to become familiar
for the efficient operation of R:base. These include the following:

f Set: The set command enables the user to alter a variety of default
procedures. For example, line width can be changed from 80 columns to

132 simply by entering "set width 132". Output can be sent to the

printer instead of the terminal by entering "Output printer". All

default values return after exiting R:base and must be changed again
in the next session.

f Li St : There are several "list" commands which enable the user to view
the structure of the data base which is being created. These commands
include the following:

- Listrel: Lists the names of all relations
- Listatt: Lists the names and characteri sties of all attributes
- Listrel all: Lists all relations and all features of each relation

except rules

t Show : The show command enables the user to view the status of
functions subject to the set command. It can also display any rules

which the user has established for the data base (see Section 2.2.5).

• Long Commands : A plus sign (+) is used to continue a command which
exceeds 80 columns in length. Before reaching the end of the line,
enter a blank space and then "+". Hit return and continue the command
on the next line.

• Multiple Commands : A semicolon (;) can be used to separate multiple
commands entered on the same line.

• Reusing the Previous Line : R:base always remembers the last line,
whether a command or data entry. You may reuse one or more items from
your last entry by using the following notations:

Notation Meaning

* Causes the corresponding input field to be repeated
*n Causes the corresponding next "n" items to be repeated
** Causes the correspondi ng item and all remaining items

to the end of the line to be repeated

2.2.4 Conceptualizing the Data Base

Prior to initiating any work on the computer, the user should first outline
manually the structure of the data base which will be created. This process
involves the following steps:

2-9

• Determine what relations (files) will be needed to contain your data

in a logical fashion.

• Assign attributes (fields) to each relation, paying particular
attention to the potential for using common attributes across
relations, and determine which are the key attributes for accessing
purposes.

• Determine what rules, if any, will be employed to control the
consistency and accuracy of data entry.

• Determine where passwords will be necessary to provide security for
the data base.

In this prototype, we have created the following relations:

• Master Client File ("msclient") provides a permanent record of each
client.

• Pre-Schedule Trip File ("prsched") provides a listing of regularly
scheduled trips on a monthly basis. This relation should provide
sufficient information for dispatchers to use in scheduling and for

drivers to use in running routes.

f Real Time File ("realtime") contains the same format as the
pre-schedule file, but will contain only true dial-a-ride trips as

they are requested.

t Vehicle Schedule File ("vsched") contains all trips scheduled during
the course of a month by combining the preschedule and real time

files.

• Vehicle Operations File ("vehops") contains information on daily
vehicle operations such as miles travelled, service hours, fuel and
maintenance expenses.

• Master Vehicle File ("vmaster") is a permanent record of each vehicle
operated by the agency.

The order in which relations are established is not important, although
typically you would begin with the master client and vehicle files. All

command and screen formats needed to create each prototype relation are
contained in Appendix D. Section 2.2.5 will provide a narrative description
of how to create the vehicle schedule files. Section 2.2.6 will describe how

to enter data into these files. Section 2.3 will explain how the two vehicle
schedule files will interact to assist the agency in the performance of the

vehicle scheduling function.

2.2.5 Creating a Data Base

This section provides a step-by-step description of the creation of a data

base. All commands used to establish the sample relation are summarized in

Figure 2-14 at the end of the section. The process of creating a data base is

summarized in Figure 2-5 below:

2-10

FIGURE 2-5. CREATING A DATA BASE

2.2.5. 1 Accessing a Data Base

The first step in creating a data base is to give it a name. We have called
our data base "CAR" (short for Call-A-Ride of Barnstable County). All names
in R:base (data bases, relations and attributes) are limited to a maximum of

eight characters, and may not contain blanks. If you are using the floppy
disk version, you will want to create your data base on the "b" drive, since
the Rrbase diskette occupies the default, or "a" drive. To input on the "b"

drive, you must enter "b;" prior to the data base name. This leaves only six
more characters for the data base name ("b:" is essentially read as part of
the name). Thus, we established our data base by entering the following:

R> "define b:car"
D>

Rrbase will respond with the D> prompt, indicating that you are now in the
define mode. To enter this data base in the future, you will type "open
b:car". If everything is alright, Rrbase will respond Data Base Exists. To

alter the definition of a pre-existing data base, simply enter "define" after
you have opened the data base.

Everything you do in Rrbase will be done in the context of a single data
base. Therefore, each session at the computer must begin with the command to

either open an already existing data base, or define a new one. If you enter
anything else, Rrbase will respond Data base does not exist. Thus, using
Rrbase should be thought of as a three-tiered process as displayed in Figure
2 - 6 .

FIGURE 2-6. RrBASE TIERS

First, you enter Rrbase from the operating system by loading the disks. You
can do only one of two things at this point, open or define a data base. Once
done, you can proceed to the inner core where you can remain in the general

2-12

R:base mode to perform a variety of functions, or enter one of the four

specialized modes. Two additional modes (forms and reports), will be

introduced later.

After defining a data base, you will want to create a password to limit access
to it. Enter "owner password name " in response to the define prompt (D>). In

order to access the data base in the future, you will need to enter "user

password name " after opening the data base and receiving the Data Base Exists
response. We have defined the following password:

R> "Owner Marc"

Keep track of your passwords. In the interest of security, R:base can't tell
you what they are.

2. 2. 5. 2 Establishing Attributes

Once inside the define mode, the first step will be to define attributes
(fields). You can define all the attributes which you will use in the entire
data base, or only those which will be associated with one specific relation.
Additional attributes can be added to the data base at any time and associated
with whichever relations are appropriate. We recommend establishing one
relation and its associated attributes at a time.

Before sitting down at the computer to define attributes, we recommend laying
them out manually first, as shown in Figure 2-7. Each record in this relation
will have a potential value for each one of these attributes. A blank form
has been provided in Appendix E for the user to reproduce and employ in their
work.

Attribute Name Type Length Key

Trip Date Tripdate date
Vehicle Number veh# text 2

Client ID cl ientid text 4 key
Last Name lastname text 15

First Name frstname text 10

Pick-Up Time putime integer
Address address text 15

City city text 10

Destination destinat text 15
Number of Trips trip# integer
Round Trip ? rt text 1

Round Trip Time rttime integer
Passenger Classification paxclass text 3

Trip Purpose trippurp text 3

Payment Code paycode text 4

Special Needs specneed text 10

Edit Date edi tdate date

FIGURE 2-7. ATTRIBUTE DEFINITION FOR VEHICLE SCHEDULE FILES

2-13

Each attribute definition contains four possible elements:

• Name - This is a maximum eight-character label which you give to each
attribute. The name should make sense to you and be easy to remember.

• Type - There are six attribute types. Simply enter the name of the
appropriate type as follows:

- Date: Dates are entered in a default format of mm/dd/yy. This can
be changed to any other combination through the set command.

- Dollar: Represents dollar amounts (assumes two decimal places).

- Integer: Represents whole numbers up to nine places.

- Time: Represents the time in hh/mm/ss format. Twenty-four hour
military time must be used.

- Real: Represents whole numbers with decimals.

- Text: Represents everything else (all alphanumeric entries).

• Length - The number of columns set aside for each attribute's data
entry. The user defines length only for text attributes. All other
attribute lengths are established by default. The text default,
requiring no user entry, is "8" characters. To enter a length, simply
type in the number of columns desired.

• Key - Keys identify attributes through which the user desires to
access data. The use of key attributes is OPTIONAL . In R:base, data
can automatically be accessed through ALL attributes. The only
advantage of a key attribute is that it accesses data faster . The

only disadvantage of using keys occurs if you are using floppy disks.
Keys occupy substantial disk space which you can ill-afford in the
floppy disk mode. If your data base is small enough to warrant using

floppy disks, it is doubtful that you need the speed advantage of
keys. (In Appendix B, we discuss how to calculate required disk
storage space.) We have designated a single key attribute,
"clientid", throughout the CAR data base.

The attributes composing the two vehicle schedule files (pre-schedul ed trips
and real time), are displayed in Figure 2-7. Most of the information is

self-explanatory. Client ID number has been established as the key field.
Depending on how the user most frequently accesses data, last name might be a

better choice for a key field.

Round-trip data is included for two reasons. Including both trips on one
record greatly reduces data entry time and disk storage space. Since all the
other data is the same, why enter it twice?

The "number of trips" attribute is essentially a "counter" for producing
reports which can analyze how many trips were taken in various categories.

2-14

This process is explained in Section 2.4. The number entered in this

attribute would normally be "1" (one-way trip) or "2" (round-trip), unless the
client was accompanied by an escort.

"Paycode" enables you to tag each trip record for later billing purposes.
"Specneed" provides any unusual information about the client (medication,
structural problems at the home, disabilities, etc.) which a driver will need

to know.

Our selection of attribute "types" requires some explanation. Although
certain entries may consist of all numerals and be thought of as an "integer"
or "real", (such as vehicle number and client ID), we have entered them as

"text". Text has the advantage of allowing the user to define field length
(and thus limiting data base size to the minimum required to receive the
data). There is no disadvantage in doing this so long as you do not plan to

perform any arithmetic function on the data. Although client ID is a number,
you would never add two client ID's together. Thus, they can be safely called
text fields.

We have also chosen to define the time fields as "integers" instead of
"times". The reason is unique to K:base which defines time as hours rminutes

:

seconds. It is the rare transit authority which schedules vehicles to the
second. If the time definition is used, seconds (even "00") must be entered.
This imposes an unnecessary data entry burden and increases the size of the
data base. By using "integer" we can also eliminate the colons. Thus, 10:00
a.m. is entered as "1000".

To begin defining attributes, type "attributes" in response to the "D>" prompt
(note the common sense nature of most R:base commands). Then enter one
attribute to a line exactly as shown in Figure 2-7, leaving one blank space
between each item in the definition.

We strongly urge you to examine each attribute definition carefully before
moving on to the next line. You cannot go back to correct a previous line .

The process of revising attributes is extremely poor and is a major weakness
of R:base. Similarly, you should know what attributes you intend to include
in each relation before starting. The process of revising data base structure
is defined in Section 2. 2. 5. 8.

R:base may contain records which have up to 1530 columns. It is unlikely that
you will want to create a record of anywhere near this length. You should
keep in mind that you can never view more than 132 columns on the screen or in

print at any one time. If you have a standard 80 column screen, the remaining
columns will be wrapped around into a second line. Wide carriage printers can
print 132 columns across. Some 80 column printers have a small type mode
which prints 132 columns. You will usually not need to see all attributes at
once. If you would like to be able to do so, the attribute lengths which you
associate in a relation cannot exceed 132 columns. Each attribute type has

the following default length:

2-15

• Date 8

• Dol 1 ar 21

• Integer 9

• Real 16

• Text 8

• Time 8

In counting up total attribute length, remember that if the attribute name
exceeds the length of the attribute field, you must add the columns occupied
by the name which will appear horizontally as headings at the top of the
screen or page. Thus, although Client ID has a data field length of 4

columns, the label "clientid" occupies eight columns.

While you most likely won't need to see all attributes at any one time,
certain attributes are likely to be called up frequently. For example, in

scheduling, you need to see pick-up time, address, destination, return-time,
etc. You should carefully consider the use to which the relation will be put

before defining its attributes. Any attribute which you will need to call up

frequently and quickly should be located in the first 132 columns of the
relation. See Section 2.3.5 on scheduling dial-a-ride trips for further
discussion of this issue. The customizing features described in Appendix C

provide further suggestions on overcoming these limitations.

2. 2. 5.3 Defining Relations

Upon completing attribute definition, enter "relations" to initiate relation
definition. On the next line, enter the name of your relation and the
attributes with which it is associated as shown in Figure 2-8.

D> relations
D> prsched with tripdate veh# clientid lastname +

D> frstname putime address city destinat trip# rt +

D> rttime paxclass trippurp paycode specneed editdate

FIGURE 2-8. DEFINING A RELATION

You must use the word "with" between the relation name and the first
attribute.

We have now created a relation called "prsched", associated with 17

attributes. Note the use of a plus sign (+) to continue the definition
process across three lines. Attributes can be associated with a relation in

any order. However, the order in which the attributes are listed in Figure
2-8 is the order in which data entry will take place. We therefore recommend
listing the attributes in an order which makes logical sense for data entry.

2. 2. 5. 4 Defining Rules

Data entry rules are a valuable tool for controlling the accuracy of the data
entry process. To begin rules definition, enter "rules". On the following
lines, enter your rules in one of the following two formats displayed in

Figure 2-9.

2-16

(1)
"
Error Message " attribute name (in relation name)

+

EQ value (and/or attribute name —TTJ

NE

GT

GE

LT

LE

CONTAINS
EXISTS

(2)
"
Error Message " attribute name 1 in relation name +

eqa attribute name 2 in relatTon name and/or
nea

gta

gea
Ita

lea

FIGURE 2-9. RULES UEFINITION FORMATS

In example (1), an attribute is being measured against a specific value. In

example (2), two attributes are being measured against each other. The

relation name in example (1) is optional (hence it appears in parentheses) and
is only required if the attribute is associated with more than one relation.
The error message should be clearly understandable to the data entry
personnel. It must be entered in quotation marks . This is the only input
form which requires quotation marks. Figure 2-10 defines the arithmetic
operator abbreviations used in rules definitions. Figure 2-11 illustrates the
rules commands entered for the relation "prsched" for the prototype data base.

EQ = equals = EQA
NE = not equal = NEA
GT = greater than = GTA
GE = greater than or equal to = GEA
LT = less than = LTA

LE = less than or equal to = LEA

CONTAINS = contains a test value
EXISTS = field must contain data

FIGURE 2-10. RULE OPERATORS

2-17

"Passenger code is incorrect" paxclass eq e or paxclass +

eq eh or paxclass eq h or paxclass eq weh or paxclass eq wh

"Trip code is incorrect" trippurp eq he or trippur eq nu +

or trippurp eq mow or trippurp eq se or trippurp eq ft +

or trippurp eq gt or trippurp eq adc or trippurp eq dl

"Trip time is too early!" putime ge 0700

"Round trip code is incorrect" rt eq y or rt eq n

FIGURE 2-11. DEFINING RULES FOR CAR

In the example shown in Figure 2-11, a data entry clerk will be prevented from
entering incorrect codes for passenger class, trip purpose, or round-trip. In

the latter case, the data must read either "y" (yes) or "n" (no). Figure 2-12
displays the definitions of the two other codes which we have created for this
relation. Similarly, a dispatcher will be prevented from scheduling a trip
before 7:00 a.m. Should an incorrect entry be made, the designated error
message will appear on the screen.

Passenger Classification

e = elderly
h = handicapped
eh = elderly/handicapped
wh = wheelchair handicapped
weh = wheelchair elderly

handicapped

Trip Purpose

he = health care
nu = nutrition
mow = meals on wheels
se = special education
ft = field trip
gt = group trip
adc = adult day care
dl = dialysis

FIGURE 2-12. VEHICLE SCHEDULE CODES

One should note that error messages are typically stated as negative
conditions (i.e., something is incorrect) to inform the user that a mistake
has been made. However, generating the message requires a series of positive
conditions. In the first example in Figure 2-11, you must "tell" R:base what
the correct conditions are to enable it to recognize a mistake. Thus, the

string of conditions following the error message should be read as "paxclass
(must) equal e" , etc.

The rules command displays two important features of all R:base string type
commands. First, the maximum number of conditions which can be strung
together is ten (10). Second, the command language is a little stilted in

that attribute names must be repeated for each condition. Whereas one might
in normal conversation say that paxclass must equal e, h, eh, wh, or weh, in

R:base one must repeat "paxclass" for each condition. Failure to do so will
generate an error and syntax message.

2-18

In stringing several conditions together, you must exercise great care in the

proper use of ''and/or''. The use of "and" creates a series of conditions all

of which must be satisfied or an error will be generated. The use of "or""

creates a series of conditions of which only one need be true. "And" and "or"

conditions can be combined within a single string of conditions.

2. 2. 5.

5

Passwords

The final step in database definition is assigning passwords to specific
relations (as opposed to the data base as a whole). There are two kinds of

relational passwords, RPW (read passwords) and MPW (modify passwords). Read

passwords permit the user to read data but not modify it. Modify passwords
permit the user to both read and modify data. Passwords are entered in the

following format:

D> Passwords
D> RPW for prsched is Tony

D> MPW for prsched is Patti

FIGURE 2-13. DEFINING PASSWORDS

2. 2. 5.6 Ending Data Base Definition

Following password definition, enter "end" to leave the define mode and return
to the general R:base module (but still within the data base which you have
just defined). If there are any attributes which have not been associated
with a relation, you will be warned by R:base that the attribute will be lost
if you leave the define mode without associating it with a relation. For this
reason, we recommend defining attributes for one relation at a time. If there
are no problems, you will receive the response End R:base Data Base

Definition.

Figure 2-14 displays the complete process of establishing the data base "CAR"
and the relation named "prsched". You can check on the data base which you
have just created by entering "listrel prsched". Figure 2-15 displays the
hardcopy print-out of the response. You can view all the rules created for a

database by entering "show rules". Figure 2-16 displays the response. Rules

6, 7, 8, and 9 were created for the relation "prsched".

Whenever you end a major step, such as defining a relation or entering data,
we recommend that you exit R:base and make a copy of your data base using the
copy function of your operating system. Be sure to copy the three *.RBS files
associated with your data base. See Appendix B for a description of R:base
file structure.

2. 2. 5. 7 Creating Additional Relations

Additional relations can be created within the CAR data base by following the
procedure described above. Simply "open b:car" and enter "define". Your next
step depends on the attributes of the relation which you are planning to

create. For example, the relation "realtime" will have the exact same

2-19

R> Define b:car
Database exists

D> owner marc
D> attributes
D> tripdate date
D> veh# text 2

D> cl ientid text 4 key
D> lastname text 15

D> frstname text 10

D> putime integer
D> address text 15

D> city text 10

D> destinat text 15

D> trip# integer
D> rt text 1

D> rttime integer
D> paxclass text 3

D> trippurp text 3

D> paycode text 4

D> specneed text 10

D> editdate date

D> relations
D> prsched with tripdate veh# cl ientid lastname frstname putime +

address city destinat trip# rt rttime paxclass trippurp paycode +

specneed editdate
D> rules

D> "Passenger code is incorrect" paxclass eq e or paxclass eq eh +

D> or paxclass eq h or paxclass eq weh or paxclass eq wh
D> "Trip code is incorrect" trippurp eq he or trippurp eq nu or +

D> trippurp eq mow or trippurp eq se or trippurp eq ft or trippurp +

D> eq gt or trippurp eq adc or trippurp eq dl

D> "Round trip code is incorrect" rt eq y or rt eq n

D> "Trip time is too early!" putime ge 0700
D> passwords
D> rpw for prsched is Tony
D> mpw for prsched is Patti

D> end
End Rzbase Data Base Definition

R>

FIGURE 2-14. DEFINING PRSCHED

2-20

Relation: pnsched
Read Password : YES
Modify Password: YES

Pt t r‘ i butes
Name Type Length Key
1 tr i pdat

e

DPTE 1 val ue (s

)

2 veh# TEXT 2 charact ers
3 cl lent id TEXT 4 charact ers yes
4 last name TEXT 15 charact ers
5 frst name TEXT 10 charact ers
6 address TEXT 15 charact ers
7 city TEXT 10 charact ers
8 paxclass TEXT 3 charact ers
9 specneed TEXT 10 characters
10 put ime INTEGER 1 val ue (s)

1

1

dest inat TEXT 15 charact ers
12 rt TEXT 1 charact ers
13 rtt ime INTEGER 1 va 1 ue (s

)

14 trip# INTEGER 1 val ue (s)

15 tr i ppurp TEXT 3 charact ers
16 paycode TEXT 4 characters

attributes
Name Type Length Key

17 editdate DPTE 1 value(s)

FIGURE 2-15. PRSCHED RELATION

2-21

RULE
RULE checking = ON

1 zip ge 0200
and zip le 02999

Message: Zip code is incorrect
RULE 2 client id IN msclient nea

Message : Cl ient ID is a duplicate
RULE 3 paxclass exis

MessagerMissing passenger classi f icat ion
RULE 6 putime ge 0700

Message:Trip time is too early!

is incorrect

c 1 i ent id IN msc 1 i ent

RULE 7 rt eq y
or rt eq n

Message : Round trip icode
RULE a paxclass eq e

or paxclass eq eh
or paxclass eq h

or paxclass eq weh
or paxclass eq wh

Message ; Passenger' code
RULE 9 t r i ppurp eq he

or t r i ppurp eq nu
or tr ippurp eq moM
or tr ippurp eq se
or t ri ppurp eq ft

or t r i ppurp eq gt
or t r i ppurp eq adc
or tr i ppurp eq dl

is incorrect

Message: Trip code is incorrect
RULE 10 endhour IN vehops

Message: End hours must be
RULE 11 endmile IN vehops

Message: End miles must be
RULE 12 endmile IN vehops

Message: End miles must be
RULE 13 endhour IN vehops

Message: End hours must be

gta sthour IN vehops
greater than start hou
gta stmile IN vehops
greater than start mil
gta stmile IN vehops
greater than start mil
gta sthour IN vehops
greater than start hou

FIGURE 2-16. RULES FOR CAR DATA BASE

2-22

characteristics as prsched (only the data will be different). To create
realtime, you can immediately enter "relations" and associate realtime with
the attributes you just created for prsched. It will then be necessary to

re-enter rules and passwords.

On the other hand, the master client relation (called msclient) will have some
of the same attributes as the schedule relations (such as clientid and
lastname) but also new attributes (such as birthdate, zip code, and sex). In

this case, you would first define the new attributes (you don't need to

redefine existing attributes). You would then associate the new relation
msclient with the appropriate attributes (both new and previously defined),

2. 2. 5.8 Altering Data Base Structure

Once the data base structure has been created, it is not an easy process to
change it. That is why we stress conceptualizing the data base and defining
attributes on paper first. Nevertheless, changes will often be necessary. Of

course, new relations can be established at any time and loaded with data from
scratch. Other, more complicated restructuring procedures are described
briefly below:

• Rules : Rules cannot be changed, they can only be deleted and
rewritten. Note in Figure 2-16 that there are no rules numbers 4 and
5. They contained errors and were deleted. To delete a rule, enter
the command displayed in Figure 2-17.

R> Delete rows from RBSRULES where numrule eq n

FIGURE 2-17. DELETE RULES COMMAND

• Keys : Keys assigned to specific attributes can be deleted and new
keys can be added. These commands are displayed in Figure 2-18.

R> Build key for attribute name in relation name
R> Delete key for attribute name in relation name

FIGURE 2-18. DELETING AND ADDING KEYS COMMANDS

• Renaming Features : Relation, attribute and owner names can be changed
by means of the commands displayed in Figure 2-19.

2-23

R> Rename attribute name to new attribute name (in relation name)

R> Rename relation relation name to new relation name

R> Rename owner owner name to new owner name

FIGURE 2-19. RENAMING COMMANDS

• Redefining an Attribute: In order to redefine an attribute (for
example, to change the length of a text field), you must create a new
relation with the corrected attribute and unload the data in the old

relation to a temporary storage file while you make the change, then
reload the data to the new relation. This is a cumbersome, time
consuming procedure described in Section 2.4.2 of the R:base manual.

This procedure is a major weakness of R:base. You should make every
effort to correctly define attributes in the first place. .

• Deleting Attributes from a Relation: The removal of an attribute from
a relation entirely is considerably easier than altering an

attribute. The project command, as shown in Figure 2-20, enables you
to create a new relation containing all or only some of the attributes
of an old relation. The project command plays an important role in

setting up the scheduling system explained in Section 2.3.

R> Project new relation name from relation name using (all) +

(attribute name 1) (attribute name 2)

FIGURE 2-20. PROJECT COMMAND

• Adding Attributes to a Relation : Attributes can be added to a

relation by means of the union command. This command can also be used
to combine two existing relations as will be shown in Section 2.3.

Define the new attributes and associate them with a new relation.
Then, use the union command to combine the existing relation and the
new relation as shown in Figure 2-21.

R> Union relation name 1 with relation name 2 forming
relation name 3.

FIGURE 2-21. UNION COMMAND

Once the combined relation is formed, you may want to remove the old

relations. This process is explained below. You must add data to the

new attributes. This can be done by means of the load module (see

Section 2.2.6).

• Removing Relations: You may have no use for an old relation,
particularly after creating a new relation through the project or

union commands. To remove a relation, simply enter "remove relation

2-24

name". R:base will respond Press [Return] to remove the relation
relation name . Press [ESC] to stop the command. This response gives
you a second chance before taking the drastic step of killing an

entire relation,

t Reload Data Base : When you delete elements of a data base, the space
they occupied remains filled. This is particularly significant when
you replace a relation through the union or project commands. Even

after deleting the old relation, the disk space which it occupied
remains full. This can be a major problem when using floppy disks.
This problem can be resolved by reloading the entire data base
(individual relations cannot be reloaded). To reload, simply enter
"reload new data base name ". If you are using floppy disks, you can
reload to either the a or b drives, depending on which has more blank
space. The second R:base diskette (which will be in drive a) has

about 150K bytes available. If you reload onto the R:base diskette,
you will later want to copy it back to your data disk using your
operating system's copy function. If you reload to drive b, you must
specify "b:" before the new data base name.

Prior to reloading on either drive, be certain that you have enough
storage space for both the old and new data bases . Appendix B

discusses storage space requirements. You will need sufficient space
only to accommodate the size of the new, reorganized data base which
will be smaller than the original data base. If you attempt to reload
without sufficient disk space, you will kill the data base . Be

certain you have a back-up copy.

^2.2.6 Entering and Changing Data

There are four methods of loading data into an R:base relation: (1) the load
module; (2) the prompt (load) module; (3) the forms module; and (4) data from
a file outside of R:base. The latter is a specialized function beyond the

scope of this documentation. We will assume that you will be loading data
originally into R:base. Of the three methods for doing so, forms is by far
superior. Forms represents, in effect, a fifth mode to go along with prompt,
help, load and define. Section 2.2.6. 1 describes how to enter data, while
Section 2. 2. 6.2 describes how to change data.

2. 2. 6.1 Entering Data

The focus of this section will be on entering data by means of the forms
mode. In order to enter data by means of the prompt mode, enter "prompt load"
and follow the directions within prompt. To enter data by the load module,
enter "load" to access the load mode. Then enter each record attribute by

attribute leaving a blank space between each value. At the end of each
record, hit "return" and begin again on the next line. The disadvantage of
this method is that you have no prompts and must keep a list of attributes at

hand for reference. In a large relation with many attributes, this can
obviously cause problems. You can also not return to a previous line for
corrections, but must leave the load module and employ one of the change
functions described in Section 2. 2.6. 2.

2-25

The advantage of the forms mode is that you can create a customized data entry
form for each relation, thus ensuring consistent and accurate data entry by

your staff. Figure 2-22 describes how to enter the forms definition mode.

R> forms
Begin R:base Forms Definition
Enter form name: Schedule
Enter relation name: prsched
Create or edit your form, push [ESC] when done

FIGURE 2-22. ENTERING FORMS DEFINITION

As is shown, each form must be named and associated with one (AND ONLY ONE)
relation. This is a weakness in that we desired to use the same form to enter
data in both prsched and realtime (since they had the same structure). We had

to create the same form twice.

Once inside forms definition, you will be faced with a blank screen on which
to design a data entry form. Use your computer's cursor control and screen
editing functions to design a form. Remember, this form is for internal use
only and should be designed to facilitate the ease of data entry. There are
really only two constraints on your design. You must leave enough space
between data items to accommodate the desired maximum length of each attribute
value. Secondly, data entry will occur in the order in which you associated
attributes with a relation in the define mode. You should probably set up

your form in the same order. Otherwise, the cursor will jump randomly from
one item to another instead of proceeding in sequence. This will slow down
data entry.

Figure 2-23 displays the form called "schedule", which we created to enter
data into the relation prsched. As you can see, we attempted to group related
data. Trip data and vehicle # appear on the first line, separated from the
client data which is grouped together following the blank line. The next
group of data is related to the specific trip. This is followed by trip
purpose and payment. The last line includes only edit date. Note that you
should use terms which are meaningful to the data entry personnel, and not

necessarily your defined attribute names. "S" and "E" indicate the starting
and ending points for each field's data entry (see below).

Trip Dat* S E Vehicle # SE

Client ID S E
Address S
Passenger Class

Last Name S
E City S

S E Special Needs

E

S
E

First Name S

E

Pick-Up Time S
Round Trip? E
Trip # S E

E Destination S
Return Time S E

E

Trip Purpose S E Payment S E

Edit Date S E

E

FIGURE 2-23. SAMPLE FORM

2-26

You can check on your form structure by entering "select all from forms" while

in the Rrbase mode. In addition to the visual layout displayed in Figure

2-23, you will also receive a numeric layout description.

Once you have completed form design, hit [ESC] to receive the following menu
at the top of the screen:

E(dit), L(ocate attributes), Q(uit):

This is the first of a series of menus which you will receive within forms.
To chose an option, enter its first letter and press return. If you are not

satisfied with the design of your form, enter "E" and and return to form
design. Otherwise, enter "L". You will receive the following response in our

sample case:

Current location for veh# - K(eep), S(et or change), D(elete):

Veh# is the first attribute associated with the relation prsched. You will
want to locate it following "vehicle#" on the form. Enter "S" (set). You

will receive the following instruction:

Current location for veh# - Move cursor to start location and press (S)

Place the cursor a few spaces after vehicle# where you would like data entry
to start (hence the S). Enter "S" to mark this position. The cursor will

then move automatically to the last possible end position for that piece of
data as defined by you in attributes. In the case of veh#, the maximum length
is "2". You will then receive the following prompt:

Current location for veh# - Move cursor to end location and push [E]

Most likely, you will want to locate E at the maximum length you have
established for the attribute. You do have the option, however, of changing
it. After entering "E", you will be returned to the set menu to repeat the
process for each attribute in turn. When all attributes have been located,
you will be returned to the main forms menu.

If you want to relocate any attributes, enter "L" and return to the locating
function. You will be prompted with the name of each attribute in turn. If

you do not want to change its location, enter "K" (Keep) and proceed to the
next attribute. If you do want a change, enter "S" (set or change) and locate
it as before. Unfortunately, you must proceed through all attributes in this
fashion even if you only want to change one.

Once your form is completely as you want it, enter "Q" to quit forms and
return to the main R:base module. Data entry is now a simple process. Type
"enter schedule" (schedule is our form name) and the form will appear on

screen. A bar shaped cursor will appear in the assigned space for our first
attribute, veh#. Enter the data and hit [return]. The cursor will

automatically move to the next attribute in sequence. It is impossible to
enter data which exceeds the assigned length of each attribute. You may leave
attribute fields blank unless you established a rule requiring an entry (the

"exists" operator). After entering a single record (all attributes), you will

receive the following menu:

2-27

A(dd this data), R(euse data after adding) E(dit), Q(uit)

If you enter "A", the data will be written to disk and a blank form will
reappear for your use. (You may hear the computer writing to disk, although
sometimes it may store several records in memory before writing. This helps
to speed up the process.) If you enter "R", the data will also be written,
but you will receive a form containing all the data you just entered. This is

a highly desirable feature which allows you to change a small number of data
items. For example, suppose you were booking the same trip for one client
everyday of the month. Instead of retyping all the client data, you would
simply need to reenter trip date. Move the cursor around to the attribute you
want to change, leaving everything else untouched. In this case, you would
only need to change the "day" in trip date. You can use your screen editor to
move around within the bar cursor, changing individual characters rather than
the whole entry. The use of this feature can greatly reduce the time involved
in data entry.

If you realize you have made a mistake, enter "E" to edit the record before
writing it to disk. When you complete the data entry session, enter "Q" to

quit to the main Ribase module.

If you had established rules for this relation during the definition phase,
you will receive an error message should you try enter data which violates a

rule. The data will not be written to disk until you correct the error.
R:base itself will also spot data errors such as incorrectly formatted dates
or times. For example, R:base knows that the 06 month has only 30 days, and
the 02 month has only 28 except for certain years in which it has 29. This
feature will spare you the embarrassment of scheduling a trip for June 31!

2. 2. 6. 2 Changing and Deleting Data

Data can be changed in R:base by going back and editing the forms which you
created, or by using the change command. The format of these two commands is

shown in Figure 2-24.

R> Change attribute name to value (in relation name)* where —
R> edit using form name (sorted by —

)
(where —

)

*You only need to enter the relation name in commands of this
type if the attribute is associated with more than one relation,
but you want to change the value in only one relation.

FIGURE 2-24. CHANGE AND EDIT COMMANDS

The advantage of the change command is that you can pinpoint exactly which
records you want to change. The disadvantage is that you have no form or
prompts for reference. On the other hand, the edit command enables you to
make changes right on your form. The disadvantage is that you have to sort
through one record at a time.

2-28

Suppose you prescheduled one week worth of trips for a client and the client
wanted to change the pick-up time (putime) from 0830 to 0930 for each day.

This change could be accomplished by one change command as follows:

R> "change putime to 0930 in prsched where clientid eq 0140 and tripdate eq +

R> 05/01/79 or tripdate eq 05/02/79 or tripdate eq 05/03/79 —

"

As with all R:base conditional string commands, you are limited to a maximum
of ten "where" conditions. The arithmetic operators ("eq") are the same

throughout R:base as shown previously in Figure 2-10. Again, the English is a

little stilted in that you have to repeat the attribute name ("tripdate") for

each "where" condition. The disadvantage of not having any prompts is

apparent in a lengthy entry such as our example. If you make one little
typing mistake, you will receive a syntax error message and have to enter the

entire sentence again.

Note the use of "and" and "or" in the "where" clause. You only want to change
records which contain the clientid "0140". Thus, this condition is followed

by "and". However, any one of the tripdate conditions can satisfy your
requirements (you could search long and hard for a single record which
contains a trip on more than one day). Thus, each tripdate condition is

joined by an "or". Remember, you cannot exceed ten conditions in one change
command. If you have more than ten conditions, you must initiate a second
change command.

If you use the form edit command to change this example, you would have to
change the pick-up time on ten separate records but first you will have to

find the records by using the sort and where commands as follows:

R> "edit using schedule sorted by tripdate where clientid eq 0140"

The sort command will place the records for which you are looking first in

sequence. It may not always be possible to bring the exact records you want
to change to the forefront, which means you will have to flip through records
you don't want to change to find the ones you do want to change.

Sorts will take place in ascending order (a,b,c ... or 1,2,3) unless otherwise
specified. To sort in descending order, enter =d following the sort attribute
("tripdate =d"). Be sure to leave a blank space after the attribute name so

R:base doesn't think the "=" sign is part of the name. You can sort by more
than one attribute, with the first one listed taking precedence. Sorts
temporarily occupy disk space (see Appendix B), so don't sort for the fun of
it!

Complete records can be deleted quite easily from R:base. The two delete
commands are displayed in Figure 2-25.

R> Delete duplicates from relation name
R> Delete rows from relation name where —

FIGURE 2-25. DELETE COMMANDS

2-29

The first case is the specialized event of entering a record twice. The
"delete duplicates" command will automatically recognize and delete any

duplicates. The "delete rows" command will delete specific records defined by

you using the "where" clause.

You should now have a fairly thorough understanding of using R:base. Sections
2.3 and 2.4 will discuss more specifically the application of these functions
to paratransit management.

2.3 APPLYING R:BASL TO TRIP SCHEDULING

The trip scheduling function provides an excellent example of the power and
benefits of data base management software such as Ribase 4000. This section
explains how to use Ribase to perform this function. This process is

summarized graphically in Figure 2-26.

2.3.1 Step 1: Establishing Base Relations (Files)

The first step is to establish two base relations into which you will enter
trip data. In this prototype, we have named these relations "prsched" and

"realtime". The techniques for defining these relations and entering data
into them was described in detail in Section 2.2. These relations will have
identical structures (attributes, rules and forms). The only difference
between them will be in the data entered. The "prsched" relation will contain
trips which are prescheduled some significant amount of time before they are
to take place. The "realtime" relation will contain true dial-a-ride trips as
they are cal 1 ed in.

Typically, demand-responsive operators will have a base of regular trips which
changes little from day-to-day or even rnonth-to-month. Mrs. Jones always goes
to the nutrition site (or adult care center, dialysis facility, doctor, etc.)
every Monday, Wednesday, and Friday at 11:30. It was the philosophy of our
case study operator, Call-A-Ride, to schedule as many trips in this fashion as

possible. In effect, a stable route structure was created with certain
individuals and trips always assigned to the same vehicle. They would then
"fill-in" with true dial-a-ride trips.

The advantages of this technique is in the creation of a stable, dependable,
cost-effective route structure. You are essentially using the preschedule
function to maximize vehicle load factors. A second major benefit of using a

preschedule file will be to greatly reduce data entry requirements since most
of the information for each trip will need to be entered only once, rather
than 20-30 times a month. The initial data entry requirements can often be a

major disincentive to automation. The disadvantage of prescheduling is the

constraints in service availability placed on the occasional dial-a-ride
passenger. While the balance between prescheduled and dial-a-ride trips is a

local operational decision, we strongly recommend the use of a preschedule
file for at least some trips.

2.3.2 Step 2: Load Prsched File

The next step involves loading data into the prsched file. This relation
should be thought of as a "dummy file" which will contain all possible

2-3U

FIGURE 2-26. USING R:BASE FOR TRIP SCHEDULING

prescheduled clients . All data for each client should be entered (using the

form "Schedule") as you will want it to appear on a vehicle schedule, except
tri pdate . Tripdate is, at this point, the true dummy feature in that it

doesn t matter what date you enter. Most of this data will never change.

Instead of entering it separately for each day of the month in which the
client rides, you will enter it only once.

We recommend editing the dummy prsched file on a monthly basis. A month is a

standard operating time frame. Accounting and reporting procedures are
typically performed on a monthly basis. Client schedules will also often
conform to monthly parameters, particularly if clients change travel patterns
on a seasonal basis as is true of our case study. Therefore, prior to the
beginning of each month, you should edit the dummy prsched file, deleting and
adding clients as appropriate.

2.3.3 Step 3: Projecting Date-Specific Prsched Files

To use the dummy prsched file, you will first need to project out of it a

series of date specific files. This can be done in a number of ways. If each
day of the week has a fairly unique trip pattern, you may want to project five
new files, one for each day of the week. Or, you may have a Monday/Wednes-
day/Friday and Tuesday/Thursday trip pattern which would require only two
separate files. In this example, we created a separate file for each day of

the week.

To project your new files, enter the following for each new file you wish to
create

:*

*

R> "project prschedn from prsched using all"

This command will cause a series of new files called prschedl, prsched2, etc.,
to be created out of the dummy prsched file. The new files will contain all

the attributes of prsched ("using all"). In place of the "n" in "prschedn",
assign a unique numeric value (i.e., 1, 2, 3, etc.) for each prsched file

which you project.

You are now ready to edit each new relation. All records will need to be
assigned specific trip dates. In our sample case, prschedl represents Monday
(day 1) trips. Monday's date is 05/07/79. We would therefore enter the

fol lowing :**

R> "change tripdate to 05/07/79 in prschedl"

*When you project a new relation out of an existing one, no features of the
original file such as forms, rules or keys are projected. Only the

attributes and data are projected. Since you will not actually enter data

into these files, the absence of these features is insignificant. You do

have to be careful that in editing (see below) you don't violate any of your
data entry rules.

**You must use the change command to accomplish this. You cannot "edit

forms" because the form "schedule" is associated only with the prsched dummy
fi 1 e.

2-32

This will assign the correct trip date to all records in prschedl. It is

important to specify the relation name (prschedl), otherwise tripdate will be

changed in all relations. It is not necessary to specify any "where"

conditions because you want to change all records in prschedl. Change the
other prschedn files to the appropriate dates in the same way for the first

week of the month.

You will next need to go back into each file and delete or change individual
records. Remember, each prschedn file contains all possible prsched records
housed in the dummy prsched file. But you know that many of these clients do
not ride on Mondays (or M-W-F depending on how you are doing it). You need to

delete these records from prschedl as shown below:

R> "delete rows from prschedl where client id eq 0007 or +

clientid eq 0043 or clientid eq 0101"

Again, be certain to include the relation name ("prschedn") to avoid deleting
the records from all files. You are limited to ten (10) "where" conditions
per delete command. Also, make certain you join the conditional "where"
string with "or's". The computer will search long and hard for a record that
contains both clientid 0007 and clientid 0043. You may also want to change
pick-up times or other attributes on certain records.

Due to the limitation of ten conditions in each string command, editing the
prschedn files can be time consuming if your preschedule is highly variable
from day-to-day. If you anticipate the need to make many changes from
day-to-day in your preschedule file, we recommend adding a date code attribute
to the preschedule file.

This attribute could work in several ways. For example, suppose most of your
trips conformed to a M-W-F (Monday, Tuesday, Wednesday) or T-Th trip pattern.
You could create a one-column attribute with data entry limited to "1" (for
M-W-F trips) or "2" (for T-Th). Then, when projecting your prschedn files,
simply enter:

R> "project prschedn from prsched using all where +

datacode eq 1"

Then, you would simply need to change the trip date as before and edit the few
trips which will inevitably change or be canceled from week to week. If your
trip patterns are really unique to each day and/or client, you might want to
create a more complex code. You could, for example, create a numeric code for

every possible travel combination for the five days (i.e., M = 1, M-T = 2,

M-T-W = 3, etc.). When projecting files for each day, make sure your "where"
clause contains all possible codes for travel on that day.

Perform this function on each prschedn file. You have now completed
prescheduling for the first week of the month. Of course, as the month
proceeds, there will certainly be ad hoc changes to the preschedule. Mrs.
Jones will become ill and cancel, etc. These changes can be entered into the
appropriate prschedn file as the month proceeds.

2-33

2.3.4 Step 4 (Optional): Project/Edi t Prschedn Files for Rest of Month

The timing for the performance of this step depends on how far in advance you
want to be able to schedule real time trips. To schedule real time trips
(Step 5) you need a base of prescheduled trips around which to plug in the
dial-a-ride trips. You now have that base for one week. If that is

sufficient, you should skip this step and proceed to Step 5.

If, however, you want to schedule dial-a-ride trips further in advance, you
must project additional prschedn files out of the existing ones. For example,
suppose we want to have a prescheduling base for the entire month and we are
using an individual file for each day of the week. After you have edited
prschedl, the Monday (or day 1) file, you must project a new file out of it

for the following Monday. You will then edit this file for the correct
tripdate. You will repeat this process two more times for the remaining two
Mondays in the month. You will then repeat the process for each day of the
week until you have 20 or so active prschedn files, one for each service day
of the month. Projecting a new file requires a single command and takes
little time. The alternative is to enter each prescheduled trip every time it

is scheduled during the month, an extremely time-consuming process.

This method has operational advantages but R:base disadvantages. The further
in advance you schedule dial-a-ride trips, the more they become almost like
prescheduled trips. This will enhance the efficiency of your operation. The
R:base disadvantage is that instead of having five active prsched files, you
have twenty. That represents a substantial increase in storage requirements.

2.3.5 Step 5: Loading Real Time Trips

There are two factors involved in loading real time trips. These are checking
for vehicle availability and client eligibility. Trip requests can be checked
against the prschedn files to determine vehicle availability for a specific
date. The more you have organized your service pattern into a series of
informal routings, the easier it will be to check on vehicle availability
since you will know what vehicle to look at for a specific trip type or area.
You can access a specific vehicle schedule by means of the "select" command as

fol 1 ows

:

R> "Select all from prschedn sorted by putime where veh# eq Al"

This will display the prescheduled trips for vehicle Al on the date of the
prschdn file. Since you can only view 132 columns at a time, it is important
that if your schedule relations exceed 132 columns, trip schedule information
such as pick-up time, location, destination, and round-trip appear in the
first 132 columns*. Otherwise, you will have to list each attribute you want
to view instead of typing "select all". This would be uncomfortably time
consuming with a live client on the line.

*hven though your screen may only display 80 columns on a single line, the
remaining columns will be "wrapped around" into a second line immediately
below the original line.

2-34

Even before checking for service availability, you will want to determine
client eligibility. Client eligibility can be checked by means of the master
client file which will be the first relation you will create in designing your
data base. You will want to check on client eligibility each time a real time

trip request is called in.

Figure 2-27 displays a report generated from the master client relation called
"msclient". The process of report generation will be described in Section

2.4. The complete client file for the case study data base is displayed in

Appendix D.

This report contains all the information needed for a dispatcher (or trip
scheduler) to perform two functions: 1) book a specific trip into the

realtime file, and 2) check client eligibility.

Each dispatcher should have a hard-copy client file for reference at their
work station. In many cases, we think this is actually faster than looking

up the client record in the computer and displaying it on screen.

Nevertheless, if you prefer to operate in the latter fashion, a specific
client record can be called up by using the "select" command as follows:

R> "Select all from msclient where clientid eq 0032"

Client records can also be viewed even more efficiently by means of the
customizing features described in Appendix C.

You will most likely chose to select client records by client ID or last
name. We recommend client ID since it is guaranteed to be unique. Again, you
must be sure that the attributes you need to see are within the first 132
columns, or use the customizing features described in Appendix C.

As can be seen from the client file report, we have requested (when printing
the report) that it be sorted alphabetically by last name. Alternately, you
might want to sort by client ID. However, many clients don't know or remember
their ID numbers so we tend to favor an alphabetical sort by last name for
this purpose.

The information from last name through special needs (specneeds) will enable
you to book a trip in "realtime" without asking the client anything except
destination and trip purpose. The remaining items will enable the dispatcher
to check eligibility. These items include specific program ID number (in this
case medicaid and Title XX); Title XX available units; a termination date; and
a termination reason. As you can see in Figure 2-27, several clients are no

longer eligible.

Once you have checked on client eligibility and the availability of service,

you can then enter the trip into "realtime" using the form "schedule" created

for that purpose.

2-35

KftSTER CLIENT FILE

c

1

a

s

Last Nane First Nane ID Address City s

Abaott Catherine 0BB4 9702 Bridge Yarmouth e

Allen Helen 0148 50 Lawtner Centervill eh

A1 lenson Herbert 0154 55 Rust own Cotuit weh

Aries Rose 0077 IS Fringewood Dennis e

Arnas Nane 0071 12 Snow Dennis e

Auld Brace 0031 27 Tealford Dennis eh

Auld Nellie 0149 108 San Marcus Falmouth eh

Aval Ion Kathleen 007E 1 Vickie Dennis e

Baker John 0001 85 Bass Dennis e

Barrett Robert 0129 88 Kenwood Falmouth e

Battis Edith 0155 481 Oates Hyannis weh

Bensten Ellen 0090 4 Beachway Hyannis eh

Bensan Helen 0008 23 Sheryl Yarmouth e

Biden Manuel 0150 29 Coronation Falmouth eh

Boggs Vickie 0122 13 Dyer Pocasset eh

Boisvert Mildred 0058 3 Alford Dennis e

Boren Hilda 0148 10 Downing Falmouth e

Boyd Thooas 0180 55 Astor Sandwich eh

ft"adley Ruth 0041 5 Ryan Yarmouth eh

Buckley Marguerite 0091 108 Syracuse Falmouth e

Buckrer Marion 0042 198 Sandra Yarmouth h

Buckner Eliza 0021 109 Lance Hyannis eh

Bursoers Blanche 0143 120 Ocean Ave Falmouth eh

Busheuff Mary 0157 4 Point East Bourne eh

Cabrera Florence 0182 73 Larry Bourne weh

Cal lahan Arthur 0049 608 Mercedes Yarmouth e

Caraichael Lillian 0027 19 Fairhaven Yarmouth e

Chaffee Claire 0045 9 IkxMjwind Dennis e

Chiles Bertha 0082 25 Eastwood Harwich e

Clark Paula 0116 1576 Samuel

1

Falmouth h

Clear Alice 0184 69 Eastwood Mashpee eh

Cleoens Vanessa 0083 43 Harper Yarmouth e

Cohen Dora 0019 38 Lucille Yarmouth e

Considine Gladys 0028 15 Healy Yarmouth h

Craig Helen 0133 79 Sidney Falmouth eh

Craig Alice 0017 504 University Harwich e

Crawford Alida 0103 5 Little Pocket Yarmouth e

Curren Ciwly 0142 82 Parkhurst Falmouth h

Cutler Miriam 0032 21 Uoodale Yarmouth e

Davis Evelyn 0102 201 Bella Vista Dennis e

Denny Charles 0055 79 Patty Yarmouth e

u

n

i

t

SpecNeed Med* XX* s Term Date Term Why? EditDate
1 !

no phone 05/31/79 moved 05/31/79

628982 05/06/79^
i

251753 30 09/30/79 05/14/79 i

medicatio 05/03/79

05/16/79
j

019952 275743 22 08/31/79 05/15/79

043904 956433 34 09/38/79 05/11/79

structure 05/17/79

05/01/79

293173 05/11/79

986152 0S/15/79

structure 05/12/79

medicatio 06/11/79

05/12/79

470145 05/17/79

05/09/79

05/31/79 overdue bill 05/31/79

05/19/78

05/23/79

escort 05/13/79 ;

05/24/79

017220 111341 12 05/09/79

022118 05/05/79 :i

medicatio 920527 05/17/79

695160 05/21/79

05/04/79

05/12/79

167177 497833 02 05/31/79 05/30/79

05/05/79

144202 05/20/79

05/31/79

176443 50 12/31/79 05/12/79

05/07/79

270766 05/31/79 deceased 05/31/79

medicatio 876847 277433 43 01/31/80 05/08/79

05/05/79

05/21/79

509556 05/03/79

415443 0 04/30/79 05/16/79

05/20/79

05/08/79

FIGURE 2-27. MASTER CLIENT FILE

Should a client's status change as a result of the telephone conversation, the
dispatcher should immediately update the client record. For example, suppose
Downey's trip request exhausts her 2 remaining units of Title XX eligibility.
After booking the trip, the dispatcher would enter the following:

R> "change XXunits to 0 in msclient where clientid eq 0097"
R> "change editdate to 05/16/79 in msclient where clientid eq 0097"

Other information regarding the client such as address, classification
(someone could cross the elderly threshold), last name (change in marital

status), or special needs might also require updating. This can be

accomplished by means of the "change" command as shown above or by using the
customizing features described in Appendix C. Whenever a client file is

updated, it is important to change the edit date as well in order to provide
an audit trail

.

Updating fields in the client master file demonstrates the true power of a

relational data base. For example, suppose that you have already prescheduled
a number of trips for a client who then moves (a not unlikely occurrence).
You will not want to go back into each vehicle schedule file and change the
address. Since the address field is shared by almost all relations in our

data base, they will all be updated automatically when you make the initial

change in the master client file. Only a data base with relational features
will function in this manner.

An alternative method of scheduling dial-a-ride trips would be to dispense
with the realtime file completely and load these trips directly into the

prschedn file of the appropriate date. While this method has some advantages
in simplifying the process, it has one major disadvantage. To schedule trips
into prschedn files directly, you would need to create a data entry form for

each prschedn file or load data without a customized form. If you want to

book trips a month in advance, you would have to create 20 or so forms, a

time-consuming task. Remember, each form is associated with one and only one
relation . We consider loading without a customized form to be a serious
probl em.

2.3.6 Step 6: Combining Prschedn and Realtime Relations

You are now ready to begin combining preschedul ed and real time trips which
have been scheduled prior to day 1 of the month. This process should be

initiated at the cut-off point for the acceptance of real time reservations.
This is usually 24-hours in advance of the trip date.

Project out of your "realtime" file a file containing only trips for day 1.

Use the following command:

R> "Project rtime from realtime using all where tripdate eq 05/07/79"

Next, union rtime with the prschedn file for day 1 as follows:

R> "Union prschedl with rtime forming vschedl"

2-37

The "vschedn" file will be the final repository of all trip information for

the month. In the above command, you do not need to specify attributes. If

none are specified, "all" is assumed by R:base.

You now have a file ("vschedn") containing all trips (both prescheduled or

real time) for the first day of the month (or 05/07/79 in our sample data).

You will have no further use for the "rtime" file since these trips now reside

in "vschedn". Remove this relation as follows:

R> "Remove rtime"

You will also, at this point, have no further use for the prschedl file since
its trips also reside in the "vschedn" file. If you performed step 4 and

projected new file(s) out of prschedl, you can now delete it by entering
"remove prschedl". If, however, you are working one week at a time, you will

now want to prepare "prschedl" for use on the next appropriate day. In our

sample, that day would be Monday, 05/14/79, since we assume that trip patterns
for each day of the week are substantially the same from week to week. Change
the records in prschedl as follows:

R> "change tripdate to 05/14/79 in prschedl"

Change individual records as needed.

You will follow the same procedure on each subsequent day. For example, on

day 2 you will "union" prsched2 with the new rtime file for day 2 forming
vsched2.

2.3.7 Step 7: Generating Vehicle Schedules

Once you have combined all trips for a specific day in the vschedn file, you
will want to produce vehicle schedules for use by drivers and dispatchers.
Figure 2-28 displays an example of a vehicle schedule. As you can see, this
has been sorted by pick-up time and includes all information necessary for

drivers and dispatchers to perform their jobs.

The next section, 2.4, describes in detail the process of report generation.
After performing the functions described in that section, this report could be
generated with the following command:

R> "Print reportname sorted by putime where veh# eq A1+
R> and tripdate eq 05/07/79"

The key point is that you want to print a separate report for each vehicle for
each day to tear off and hand to the appropriate driver. This is accomplished
through a series of "where" conditions.

2.3.8 Step 8: Combining Daily Schedules

As the month proceeds, you will be creating a vschedn file for each day
containing all the prescheduled and real time trips for that day. At some
point in the process, you will need to combine these daily schedule files so

that you end up with a single trip file at the end of each month. This file

2-38

’/EhICLE schedule

Venicle #; fli

Date: 85/^7/75

Time Last Nasie Fu'st Name Address Ci-iiy Destination ST ".;i:e Class Purpose Special Needs

708 flilen Helen 50 Lawtner Centervlle Dialysis en di

700 Saridinart Theresa 1507 v'lnawood Hyannis Dialysis h cl structure

S00 Tower Nicholas 27 Breaker Pocasset SCH 1580 rteh acc

900 Craig Helen 79 Sidney Falffiouth ecH 1508 eh adc medication

980 Shertaan Milton 1 Cold Ridge Bourne BCH 1500 C adc fiisdication

900 Barrett Robert 6G Kenwood Falmouth bch e acc

915 Lapon Peter 1501 Beacon Falmouth 6Ch 1580 eh acc

915 Pryor Avis 18 Pilgrim Pocasset BCH 1500 eh acc

930 Luoer John Fish fry Falmouth BCH 1500 wh acc

930 !*!athias Milton 29 N Pocasset BCH 1500 wh adc

945 Cabrera Florence 73 tarry Bourne BCH 1508 wen 30 c

945 Seal Marie 78 Moreland •Centervlle 9Crt 1500 en adc

1000 Biden Mamie 1 29 Coronation Falmouth BCH 1100 eh nc

1000 Curren Cindy 82 Parknurst Falmouth Dr Hal garth 1188 h hC

1^ Cabrera Florence 73 Larry Bourne Fai Hospital 1100 weh nc

1130 Griffin Geneviev 4 Poppy Falfiiouth Fai)^cspitai 1258 e he

1200 Stanley Harriet 191 Hill Glen Falmouth Fal hospital 1308 weh hC

FIGURE 2-28. SAMPLE VEHICLE SCHEDULE

2-39

will serve as the basis for most of the end-of-the-month reports generated in

Section 2.4. These daily files can be combined in one session at the end of
the month or periodically during the month. We recommend combining these
files on a daily basis beginning on day 2 when you will first have two files.
Again, you will need to use the union command to combine two relations to form
a third. You can only union two relations in one command in R:base as

fol 1 ows

:

R> "union vschedl with vsched2 forming vschedS"

After completing this union, you will have no further use for the old vschedn
files. They should be deleted using the "remove relation name " command.

If you use floppy disks, you will want to consider "reloading" the data base
each time you delete records or relations. This reduces the overall size of
the data base. However, in order to reload, you will need space on the disk
equal to the size of the original data base minus whatever you deleted. This
issue is discussed more fully in Appendix B.

This process illustrates the obvious limitations of the floppy disk approach.
Each time you project new files or union to create a third file, you
tremendously decrease available disk space. We were able to perform this
function for a one-week period in a five vehicle system. We may have had

enough room for two weeks.

2.4 REPORT GENERATION

The ability to generate reports, both the print-out of a vehicle schedule
shown in Figure 2-28 and end of the month statistical summaries, is a second
powerful feature of Ribase. Figures 2-29, 2-30, and 2-31 display three
examples of "end-of-the-month" reports which can be generated by R:base.

The report displayed in Figure 2-29 is part of a monthly statistical analysis
of ridership by passenger classification. This report indicates that 48 trips
were accounted for during the week of May 7-11, 1979, by passengers classified
as "weh" (wheelchair, elderly handicapped). Figure 2-30 displays a bill

accounting for all medicaid trips during the same time period. This report
also computes the total cost of these trips. Figure 2-31 displays a report
which compiles various performance measurements. Because it uses the most
report features, we will use this report to explain the report generation
process in Section 2.4.1. In Section 2.4.2, we will discuss some other
aspects of report generation demonstrated in Figures 2-28, 2-29, and 2-30.
All report formats are contained in Appendix D.

2.4.1 Measuring Performance through an R:base Report

2.4. 1.1 Context

Report generation should ideally take place at the end of the month. When you
have completed a monthly cycle of scheduling as described in Section 2.3, you
should generate reports for the month. If you are using floppy disks, you may
need to generate reports more frequently so that you can remove the data and
clear disk space.

2-40

RIDERSHIP BY CLIENT

ID Last Name First Nane Address City Class Purpose Pay Trip Date Trip# Edit Date

8018 Suttierez Isabelle 14 Marigold Yarmouth weh he bill 05/08/79 2 04/30/79

0012 Guttierez Isabelle 14 Marigold Yarmouth weh he bill 05/10/79 2 04/30/79

0012 Guttierez Isabelle 14 Marigolc Yarmouth weh he bill 05/11/79 2 04/30/79

0016 Locke Cathleen 17 Fringewood Yarmouth weh he bill 05/11/79 1 05/09/79

0054 TheoiwiC Roger 134 Forest hyannis weh he fare 05/10/79 1 05/08/79

0105 Staaleton Elizabeth 29 Olson Dennis weh nu nu 05/08/79 2 04/30/79

0105 Staoleton Elizabeth 29 Olson Dennis weh nu nu 05/09/79 2 04/30/79

0105 Stapleton Elizabeth 29 Olson Dennis weh nu nu 05/11/79 2 04/30/79

0134 Tower Nicholas 27 Breaker Pocasset weh adc adc 05/07/79 2 04/30/79

0134 Tower Nicholas 27 Breaker Pocasset weh adc adc 05/09/79 2 04/30/79

0134 Tower Nicholas 27 Breaker Pocasset weh adc ace 05/10/79 2 04/30/79

0139 Stanley Harriet 191 Hill Glen Falmouth weh he bill 05/07/79 2 04/30/79

0139 Stanley Harriet 191 Hill Glen Falmouth weh he bill 05/08/79 2 04/30/79

0139 Stanley Harriet 191 Hill Glen Falmouth weh he bill 05/09/79 2 04/30/79

0139 Stanley Harriet 191 Hill Glen Falmouth weh he bill 05/10/79 2 04/30/79

0139 Stanley Harriet 191 Hill Glen Falmouth weh he bill 05/11/79 2 04/30/79

0154 Ai lenson Hertert 55 Rustown Cotuit weh he XX 05/08/79 2 04/30/79

0154 Allenson Herbert 55 Rust own Cotuit weh he XX 05/10/79 2 04/30/79

0162 Cabrera Florence 73 Larry Bourne weh he med 05/07/79 2 04/30/79

0162 Cabrera Florence 73 Larry Bourne weh adc adc 05/07/79 2 05/05/79

0162 Cabrera Florence 73 Larry Bourne weh he med 05/08/79 2 04/30/79

0162 Cabrera Florence 73 Larry Bourne weh he med 05/09/79 2 04/30/79

0162 Cabrera Florence 73 Larry Bourne weh he med 05/10/79 2 04/30/79

0162 Caorera Florence 73 Larry Bourne weh he med 05/11/79 2 04/30/79

0165 Opie Catherine 21 Cabot Cotuit weh he bill 05/08/79 2 05/03/79

TOTAL TRIPS; 48

FIGURE 2-29. RIDERSHIP REPORT ("TRIPS")

2-41

1

I

I

MEDICftID INVOICE
Month

:

May

Med# Last Name F i rst Name Trip Date Dest inat ion Trip# Pay
,

019952 Puld Grace 05/08/79 CCH c. med '

019952 ftuld Grace 05/10/79 CCH c! med
043904 ftuld Nel lie 05/08/79 Fal Hospital c. med
070200 Remy Marie 05/11/79 CCH c! med
070980 Donad io Ethel 05/09/79 Pondville Hosd c. med
070960 Donad io Ethel 05/07/79 Pondviiie Hosp £ med
070900 Donad i

o

Ethel 05/10/79 Pondville Hosp c. med
070980 Donad io Ethel 05/11/79 Pond V i 1 1 e Hosp •"*1

c. med
120922 Peeke Mary 05/07/79 Dr Berry 1 med
120922 Peeke Mary 05/08/79 Dr Berry •} med 1

167177 Chaffee Claire 05/08/79 Dr Maloney a med
398790 Sandman Theresa 05/08/79 Dialysis 1 med
398790 Sandman Theresa 05/09/79 Dialysis 1 med
398790 Sandman Theresa 05/07/79 Dialysis 1 med
390790 Sandman Theresa 05/11/79 Dialysis 1 med
390790 Sandman Theresa 05/10/79 Dialysis i med
509556 Curren Cindy 05/11/79 Dr Hal garth a med
509556 Curren Cindy 05/10/79 Dr Hal garth c. med
509556 Curren Cindy 05/07/79 Dr Hal garth c. med
509556 Curren Cindy 05/08/79 Dr Hal garth c! med
509556 Curren Cindy 05/09/79 Dr Hal garth It! med
541275 Rice Paron 05/09/79 Brewster Manor •#

X med
543987 Warner Nel lie 05/09/79 Dr Coop d med
628962 filien He 1 en 05/09/79 Dialysis •1

j. med
628902 PI len Helen 05/11/79 Dialysis 1 med
620982 PI len Helen 05/07/79 Dialysis 1 med
628982 PI len Helen 05/10/79 Dialysis i med
626982 P 1 1 en Helen 05/08/79 Dialysis 1 med
695160 Cabrera Florence 05/09/79 Fai Hospital C. med
695160 Cabrera Florence 05/10/79 Fal Hospital c. med
695160 Cabrera Flov'ence 05/08/79 Fal HosDital c. med
695160 Cabrera Florence 05/11/79 Fal Hospital o

L— med
695160 Cabrera Florence 05/07/79 Fal Hospital o med

TOTftL TRIPS: 53

COST: 463.750

FIGURE 2-30. INVOICE REPORT ("MEDBILL")

2-42

VEHICLE STATISTICS

/eh« Trip Date Hours Miles Fuel Cost MP8 Oil Cost Repair

A1 05/07/79 10.0 249.0 10.9 8.500 22.84 2 2.16 radiator

A1 05/08/79 10.0 125.0 15.8 11.56 7.911

A1 05/09/79 10.0 136.0 9.00 8.000 15.11

A1 05/10/79 10.0 141.0 9.00 8.000 15.67

A1 05/11/79 10.0 139.0 9.00 7.500 15.44

A2 35/07/79 3.50 299.0 20.0 16.00 14.95 1 1.25

A2 05/08/79 8. 50 202.0 20.9 16.30 9.665

A2 05/09/79 8.75 272.0 11.0 8.880 24.73 1 1.25

A2 05/10/79 8.25 200.0 20.2 15.75 9.901

A2 05/11/79 6.50 300.0 17.5 14.15 17. 14

A3 05/07/79 7.25 138.0 21.3 17.00 6.479 windshield wipe

A3 05/08/79 7.25 106.0 17.5 14.00 6.057 inspection

A3 05/09/79 8.50 227.0 21.7 17.50 10.46

A3 05/10/79 7.25 152.0 18.5 15.00 8.216

A3 05/11/79 8.75 139.0 14.5 12.35 9.586

B4 05/07/79 S.00 98.00 10.1 8.250 9.703 replace tire

B4 05/08/79 6.00 97.00 10.1 8.250 9.604

34 05/09/79 8.00 111.0 7.00 6.000 15.86

B4 05/10/79 6.00 74.00 8.00 7.000 9.250

B4 05/11/79 6.50 104.0 8.00 7.000 13.00

C2 05/07/79 8.00 308.0 11.4 9.250 26.32

C2 05/08/79 7.00 137.0 12.4 10.10 11.05

C2 05/09/79 8.75 301.0 17.5 14.25 17.20 2 2.94

C2 05/10/79 8.75 128.0 11.0 9.000 11.64

C2 05/11/79 7.25 150.0 7.40 6.000 20.27

Total 204. 4325.00 275.590 338.0

Average l<P6: 13.5

Mi les/Trip; 9.010

Trips/Miles 0.111

Trips/Hour: 2.356

FIGURE 2-31. VEHICLE STATISTICS REPORT ("VEHSTATS")

Cost

45.M

23.75

2.000

100.0

170.75

2-43

2. 4. 1,2 Defining a Report

The report definition process is very similar to the forms definition process,
with some added capabilities. Like forms definition, report definition is a

unique R:base mode, the sixth which has been defined. You enter the reports
module in the same way you enter the forms module. These commands are shown
in Figure 2-32.

R> Reports
Begin R:base reports definition
Enter report name: vehstats
Enter relation name: vehops
E(dit report), L(ocate), M(ark), D(efine), S(et), H(elp), Q(uit)

FIGURE 2-32. ENTERING THE REPORT MODULE

You are now faced with the main reports module menu. Figure 2-33 displays the
character! sties of the relation vehops (vehicle operations), for which the
report "vehstats" (vehicle statistics) will be generated. Figure 2-34
outlines the report generation process in the order in which we recommend
proceeding.

Name Attribute Type Length Key

Vehicle # Veh# text 2

Operations Date Opsdate date
Driver # driver# text 2

End Mile endmile integer
Start Mile stmil

e

integer
Operation Miles opsmile real

End Hour endhour integer
Start Hour sthour integer
Operation Hours opshour real

Fuel Quantity fuel qty real

Fuel Cost fuel cost real

MPG mpg real

Oil Quantity oil qty integer
Oil Cost oil cost real

Repair repair text 15

Repair Cost repcost real
Edit Date editdate date

FIGURE 2-33. VEHOPS RELATION

This relation contains a feature not previously discussed. That feature is
the "assign" conimand. Several of the attributes in vehops represent the
result of performing an arithmetic function on two other attributes. For
example, opsmile (operation miles) equals endmile minus (-) st(art) mile.
Opshour works in the same way. These values can be entered directly by

2-44

FIGURE 2-34. REPORT GENERATION PROCESS

2-45

personnel or R:base can compute them. In the case of opshour, we chose direct
entry since we made all time attributes "real" instead of "time". It was
therefore necessary to convert time values (0830 hours) to real numbers (8.5
hours).

In the case of opsmile, however, we instructed Rrbase to do the computing.
This can be done as follows:

R> "Assign opsmile to endmile - stmile in vehops"

Thus, opsmile will equal end mile minus start mile. Incidentally,
anticipating this function, we made a rule in vehops that end mile must be

greater than start mile. Note that you must leave a space on either side of
the arithmetic operator or R:base will read it as part of the attribute and

tell you that no such attribute exists. We instructed Rrbase to compute "mpg"

in a similar fashion:

R> "Assign mpg to opsmil e/fuel qty"

The assign command can add (+), subtract (-), multiply (x), divide (/), and
calculate percentages (%). You can not only compare one attribute (endmile)
to another (stmile) as above, but compare attributes to a specific value or
two values to each other. For example, we could have assigned opsmile to

"endmile - 100" or to "250 - 100". If you change any attribute
characteristics, make certain you also change any "assign'^ command to reflect
these changes .

2.4. 1.3 Editing/Creating a Report

You will design a report exactly as you defined a form. Keep in mind,
however, that a report is intended for external uses and not internal data
entry. This difference may impact your design choices. Figure 2-35 displays
the design layout for the report "vehstats". "S" and "E" define the data
entry areas as on forms. The letters in the left-most column delineate
headings, detail and footing (see below). You can check your report design
layout by entering "select all from reporter". You must select "all". This
design layout is organized in the same way as the forms design layout,
providing not only a visual picture of the layout (as shown on Figure 2-35),
but a numeric layout description as well.

2-46

VEHICLE STATISTICSH

H

H Vehi Trip DateTrip Date Hours Miles Fuel Cost HP6 Oil Cost Repair Cost

H

D SE S E SESESESESEE SE S E S E

F

F

F

F

F Total:

F

F Average MPG:

F

F Niles/Trip:

F

F Trips/Hile:

F

F Trips/Hour: S

S E S E S E S £ S E

S E

S E

S E

E

FIGURE 2-35. LAYOUT FOR REPORT "VEHSTATS"

Because a report is for external use, you will probably want to pay a little
more attention to the design process than was the case in designing forms. We

recommend laying out your design manually first as shown in Figure 2-36 for

the report "vehstats". We have provided blank layout forms for your use in

Appendix E. You want to be sure to leave enough room for the maximum length
of your data fields and not exceed a total width of 132 columns. If at any
time you lose track of the attributes in your report, press "F3" for a

display. Hit [ESC] to return to report generation.

2.4. 1.4 Defining Variables

In addition to locating attributes as was done in forms, reports also enables
you to define new variables and calculate their values. Variables defined in

the "vehstats" report shown in Figures 2-31 and 2-36 include sums for hours,
miles, fuel cost, mpg, and repair costs; and calculation of average mpg,
miles/trip, trips/mile, and trips/hour. You are limited to ten variables on
any one report, which is why we did not sum fuel consumption or oil cost.

Summing across in R:base is very cumbersome because you can only sum 2

attributes/values at a time. Thus, if we wanted to sum all the cost factors
in Figure 2-31 across one record, we would have to sum the first two, obtain a

total, add it to another, etc. Each step would use up one of our ten
permitted variables. Given these limitations, it is much more efficient to
transfer this data to a spreadsheet (see Section 2.5).

2-47

o
»—

<

I—

Ci.

s:o

ae.o
Q.
UJ
a;

+->

i/i

t_ dj o +->

3 1— O CO
O -I— O +-> O to
-ce,— ocooojt.
to I/) 0> cn 0. 3 «d-i

—

3
Q.Q.ZJ Q-O; O^-r- ooo^-Et-Otos^

<U E E
<4- tt_ 14_ 14_ CD,— 3 3OOoOoQ--'-<oto

E EEEEEEEEOO33rJ3Z5Z330000
tOtOtOtOWtOtO"?}"^

< (—
t— Q
<C '

Q 3
cM00LOtotf>to«^.—ttOLOtn LOtOl—^tOtOLOtOtOLf)

ej
I—

\

00
LlJ

0£.o

<c •o t— _1z < o
UJ Q O

^oor^totOLO^O.—ii—I,—

I

.—tCVJOO«;;d-Lf>(X>t^OOO.—

t

lLOtO'«OI^
CVJOOtOUOOOOOCOf'OOJ

*—• •

CS I— _)
UJ < o
30 Q O

tOr-HCO.—It—tOOOr'»l^l^
.-HC\Joo>^LOtoi— r».ooo

OOr—lOOtO-—<t—I.—ICO
CMOOtntor^rocooocM

oo^CT>tntr>«^*^'rooo<^to^to CVJ OJ

o
COz
1—1

>-
<c
_l

>-
I

I<

<
s:

oz
UJ

oo
oor^<o>r^co^rocvj.-iOc\JOO
to r-ICMCO«5i-LOtOr^CO!T>r-lr-l to to LO to

CO
UJ
GO

o
C_)

< UJ •

(— Z 00
«I ' oQ —I Z

to^r-HOOcvit—iooo^r^r^r~.LO
t—<cvjf^>!d-uototor^ooo

to to to to

I p'«r^r^r^i—,r>.p^r^r^r^i

—

cooocofOootor^CTir-i
oococooorococooo^

GO
UJ —I
I— c
=> •—

I

30 QG
1—

t

0£ > UJ
t- 51
I— QG <t
«a: o z

4U
O) t- <u to
-M 3 r- +J O
(O o -r- cr o

=«5 T3 -c E 1— <—

to t/) 4-> lO. 0) £- to
-M -M £- 0> CO •r- 1— 3 CO

£- to 3 r— O CD o. CD C_ -1- O 1

4-> O O O O. 0) 0.+J e x: CM
CT O O Z E <4- E £- E QJ o. o.

C3i— 1

—

O. (O. E E E E E 0) -1- •r- UJ
O.T- -1- cu 0) 1 3 3 3 3 3 > •- £_ t_ QG
E O O £- £- 1 to CO CO to to TJ E -)-> 4-> Z

CO
C3G
UJ

UJ GO
fOLOtOtOLOLOLOtOtOtOLOLOCO

CO
to I

CO CO CO

<z
o

to
a
-M
to

-(-)

IT3

-t->

OO

O)

O
o:
<u

O)
-M
fO t_ ••

=lfc "O to to -I- _l
Q.t_a)i— -»-> +J(04-JcC^• 1— 3,— 0» tOCOi— to CLtOI

—

a)t-0'i-30Q.T-0CU0O>1— ZSIU.OSOCOQGCOI—

CO
CU Q. 0» t-
s: 3

£_ -I- O
0) I— s z
<o to to to
£-0)0.0.
OJ t— -I- •l-

> -I- £_ t_< s: I— I—

2-48

To access the define function, enter "D". You will be presented with the

following choices: D(efine),R(edefine),Q(uit). Enter "D" again to define new

variables for the first time. You will receive the following response:
Expression. The "expression" will consist of the variable name equal to a

combination of attributes and/or values in an arithmetic expression. Setting
variable expressions is done exactly the same way as "assigning" computational
values to attributes. Variable names, like all R:base names, cannot exceed 8
characters. Be certain to leave blank spaces on either side of the arithmetic
operator.

We defined the variables in the Vehicle Statistics report as shown in Figure
3-37. A listing of variables can be obtained at anytime while within the

report mode by pressing the "F3" key. Press [ESC] to return to reports
definition.

summpg s sum of mpg
sumflcst = sum of fuel cost
summiles = sum of opsmile
sumhours = sum of opshour
sumrep = sum of repcost
count = count +1

avempg = summpg / count
mi letrip = summiles / 480
tripmile = 480 / summiles
triphour = 480 / sumhours

FIGURE 2-37. VARIABLES FOR "VEHSTATS" REPORT

The format of the sum variables is self-evident. The "count" variable is

necessary to calculate average mpg. Average mpg equals the sum of all mpgs
divided by the number of occurrences. In the vehops relation (unlike the
schedule relations which contained the attribute "trip#"), we did not provide
any mechanism for counting occurrences. Therefore, the count function must be

established during variable definition.

The final three performance measurements in Figure 2-37 demonstrate the
interaction of an attribute and a value. "480" is the total number of trips
taken during the specific time period. We generated this number by means of
the ridership report ("trips") shown in Figure 2-29. If we don't specify any
"where" conditions, we will receive a report of all trips taken and a

summation of the total number. We have then taken that number, "480" and
entered it into the definition of the "vehstats" report. This value would, of
course, need to be changed each month. Instructions for revising variable
expressions appear in Section 2.4. 2.3 below.

2-49

2. 4. 1.5 Locating Attributes and Variables

After defining your variables (if any), you will proceed to locate both
attributes and variables on the report form. This is accomplished exactly as
it was in forms. In addition to being prompted with the name of each

attribute, you will also be prompted with the name of each variable which you
defined.

We caution you on the location of real values (numbers with decimals). It is

tricky to obtain the exact number of decimal places which you want to see on

the report. It requires you to have a good idea of how many places will be

occupied by the whole number. For example, you will naturally want a monetary
value to have two decimal places. If you anticipate that the whole number
will occupy two places, you should assign five columns from the start to the

end of the value. This will work fine if you are right and the number is

99.74 (5 places including the decimal point). If, however, the number
actually exceeds one hundred, it will read I0I.7.

2.4. 1.6 Marking the Report Layout

Each line of a report can be designated as either "heading" "detail" or

"footing". Upon entering the "M(ark)" function, you will find the cursor in

the left-most column. Use your cursor controls to move up and down along this

column to mark lines.

Heading and footing lines contain information which you will want to appear on

every page of a multi-page report. Not surprisingly, the heading is at the

top and the footing is at the bottom. In the vehicle statistics report, the

title, headings, and underlining should be designated with an "H" for

heading. In addition, if you want a blank line between the title and

headings, you must also designate that line with an "H". The footing lines
begin at "total" and go to the bottom. If you want a blank line between the

data and the footing, you should designate the line above "total" with an "F"

as well as all the other footing lines.

Detail lines contain only data. In a report of this type, you need only
designate one line as (D)etail. If you designated a second line as detail,
your report would have a blank line between each line of detail. In some

cases, you might want to do that, depending on the amount of data you
anticipate. Do not try to create a blank line between the detail and the

footing by adding an extra "D" line. Rather, you should add an extra "F"

line.

Once you have marked a line, you can't immediately change it. We found this
quite annoying. You must leave the mark function and then come back to it,

whereupon all your marks will have been erased and you can start again.

2-50

2.4.

1.7

Page Size

The default report page length is 58 lines. To alter it, enter "S" and then
the number of lines you desire in response to the prompt:

Current number of lines is 58: New Number:

2.4. 1.8 Printing a Report

The command to print a report is "print reportname". You may attach the usual
sort and where clauses. In our example, the command will read:

R> "Print vehstats sorted by veh# opsdate"

2. 4. 1.9 Deleting a Report

Reports may be deleted using the following command:

R> "Delete rows from reporter where rname = reportname "

2.4.2 Other Uses for Reports

In addition to the use of reports for performance measurement and vehicle
schedules, a variety of other functions can also be generated as described
bel ow.

2.4. 2.1 Ridership Analysis

As shown in the report called "trips" (Figure 2-29), ridership can be analyzed
in any way chosen by the user. In this example, we have requested to see

trips taken by clients classified as wheelchair elderly handicapped (weh).
The command to generate this report is as follows:

R> "Print trips sorted by clientid tripdate where paxclass eq weh"

If we had attached no "where" condition, all trips taken during the specified
time period would have been included.

This report illustrates the use of an attribute which can function as an

internal counter. The attribute "trip#" assigns a numeric value to each
record (1 = one-way trip; 2 = round trip). By simply defining a summation
variable in reports ("sumtrips = sum of trip#"), R:base will calculate the
total number of all trips, or trips disaggregated however we chose to do so.

2. 4. 2. 2 Invoicing

Figure 2-30 demonstrates the use of reports to prepare an invoice for a human
service program. This report, called "medbill", provides the information
requested by the agency in order to reimburse the transit operation. It is

sorted by medicaid# as this is most relevant to the recipient agency.* Total

’‘^In order to produce this report, med# was added to the vsched file. We

should have included it in the base files from the start.

2-51

trips are again calculated using the "trip#" attribute. Cost is determined by

assigning a value to the cost of a trip and defining it as part of a variable
in reports ("cost = sumtrips x 8.75"). The report can be generated by the

following command:

R> "Print medbill sorted by med# tripdate where paycode eq med"

All the data shown on the report is generated by that command. We have
entered the month "May" directly during the report design process. This can
be easily edited at billing time each month.

Figures 2-38 and 2-39 demonstrate other examples of invoice reports. Figure
2-38 is an invoice sent to a city for trips taken by residents of the city and
not covered by a human service program. Note the use of the footing to

explain the various codes used on the invoice to its recipients. Note also
that the name of the city, "Dennis", is entered by the report function as

fol 1 ows

:

R> "Print citybill sorted by clientid tripdate where city eq +

R> Dennis and paycode eq bill"

By changing the name of the city in the "where" clause, you can generate a

distinct bill, properly labelled, for each political jurisdiction in your
service area.

Figure 2-39 demonstrates an example of a client bill. Note again the
explanatory material in the footing. A separate bill can be generated for
each client by using "clientid" in the where condition as follows:

R> "Print bill sorted by tripdate where clientid eq 0001 and +

R> paycode eq bill"

Note also in all three examples the use of the attribute "paycode" in the
where clause to ensure that only trips billable to a particular institution or
person are selected.

2. 4. 2. 3 Disaggregating Performance Statistics

In the example shown in Figure 2-31 and used as the basis for Section 2.4.1,
we chose to generate aggregate performance measurements for all vehicles.
While this data is important, you will also probably want to view this
information disaggregated by vehicle. This would enable you to isolate such
events as poor load factors, high repair costs, poor fuel mileage, etc.

A weakness of R:base is the lack of a "subtotal" function which would enable
you to accomplish this di saggregation on a single report. The only way to

accomplish this function is to use the "where" clause to create a series of
reports by vehicle. A sample is shown in Figure 2-40, created by the
following command:

R> "Print vehstats sorted by opsdate where veh# eq Al"

2-52

CITY ASSESSMENT

City; Dennis

Month: f?ay

ID Last Nane First Nane Address Tripdate Destination Trio# Class Purpjse Pay

00131 Baker John 65 Bass 05/07/79 Pondvilie Hosp 2 e he bill
0001 Baker John 65 Bass 05/08/79 Pondville Hosp 2 e he bill
0001 Baker John 65 Bass 05/09/79 Pordville Hosp 2 e he bill

0001 Baker John 65 Bass 05/10/79 Pondville Hosp 2 e he bill
0001 Baker John 65 Bass ^/ll/79 Pondville Hosp 2 e he bill
0028 Norris Ethel 2 Sweetwater 05/07/79 Dr. Fitch 2 e he bill

005S Boisvert Mildred 3 Alford 05/11/79 Dr Brinkerhoff 2 e he bill

TOTAL TRIPS: 14

TOTAL COST; 1E2.50

Puroose Code; he = health care; nu = nutrition site; siow = iseals on wheels; se = soecial education
;

ft = field trios; gt = group trios: adc = adult day care; dl = dialysis.

Passenger Code; e = elderly; h = handicapoed; en = elderly handicapped; wn = wheelchair handicapped;

weh = wheelchair elderly handicappec.

FIGURE 2-38. CITY INVOICE ("CITYBILL")

CLIENT BILL
Month: May

Name: Baker
Address: 65 Bass

John ID: 0001
City: Denn i

s

Trip Date Dest inat ion Purpose Trip# Paycode

05/07/79 Pondvi lie Hosp he
05/08/79 Pondvi 1 le Hosp he
05/09/79 Pondvi 1 le Hosp he
05/10/79 Pondvi lie Hosp he
05/11/79 Pondvi lie Hosp he

2 bill
2 bill
2 bill
2 bill
2 bill

TOTOL TRIPS: 10

TOTAL COST: 10.00

Purpose Code: hc^health care; nu^site nutrition; mow^meals on wheels;
se^special education; ft^field trips; gt^group trips;
adc-adult day care; dl=dialysis

Trip# equals the number of trips taken on a given day. If you rode the
bus both waysi trip# will equal "2". - If you were accompanied by an
escort, the escort’s trips will also be counted.

FIGURE 2-39. CLIENT BILL ("BILL)''

2-53

VEHICLE STATISTICS

Veh# Trip Date Hours Miles Fuel Cost

Al 05/07/79 10.0 849.0 10.9 8.500

Al 05/00/79 10.0 185.0 15.8 11.56

Al 05/09/79 10.0 136.0 9.00 8.000

Al 05/10/79 10.0 141.0 9.00 8.000

Al 05/11/79 10.0 139.0 9.00 7.500

Total 50.0 790.000 43.5600

Average HP6:

MP6 Oil Cost Repair Cost

88.84

7.911

15.11

15.67

15.44

8 8. 16 radiator 45.00

76.98 45.000

15.4

Miles/Trip: 4.115

Trips/Mile: 0.843

Trips/Hour: 3.840

FIGURE 2-40. DISAGGREGATED VEHICLE STATISTICS

Before printing reports like this, however, you may need to modify some of the
variables. As you recall, we generated the performance measurements in Figure
2-31 by using the total number of trips "480", as an absolute value in

defining the report variables. This value must be changed to reflect trips
associated with each vehicle.

First, use the "trips" report to generate this data as follows:

R> "Print trips where veh# eq Al"

Next, enter the D(efine) mode of reports and enter "R". The screen will list
all variables and prompt you as follows: variable name: Enter the previously
defined name of the variables which you want to change. You will receive the
following prompt: S(et), D(1ete), Q(u1t). Type "S" and enter the new
variable expression. In this example, we would substitute the value "192"

(the number of trips accounted for by vehicle # Al) for the value "480" (the
total number of trips).

2. 4. 2. 4 Using Select to Generate Output

As discussed earlier (see Section 2.3.5), you can output data very simply by
means of the select command. The disadvantage of select is that you have no

way to design a clear and aesthetically pleasing report. However, in the case
of a very small data base which changes rarely, the select function may be

perfectly adequate. An example is demonstrated in Figure 2-41. This report
is simply a listing of all vehicles owned by the agency. Given the amount and
stability of the data, it hardly seems worth the effort to define a report.
You will have to live with no titles or footings, and headings which are your
attribute names. This "report" would be generated as follows:

R> "Select all from vmaster sorted by veh#"

2-54

vehi vehid lie# ymfg Hke odel engsz title lien purdete radio access ^chair

A1 -9 Bus207 1976 Dodgt B3M 318CID Elder Serv EOTC 04/21/76 y y 3

A2 -« Bus288 1976 Dodge B3ee 318CID Elder Serv EOTC 04/20/76 y y 3

A3 -0 Bus209 1976 Dodge B300 318CID Elder Serv EOTC 04/20/76 y y 3

B4 -€ B37209 -• Dodge B300 360CID Herctiants none 09/01/7B y n 0

C2 -9 B70663 1974 Volks Magon UN(Elder Serv none 10/01/74 y n 0

FIGURE 2-41. VEHICLE MASTER REPORT

2.5 OTHER APPLICATIONS SOFTWARE

This section describes the uses which can be made of three other types of
applications software in paratransit management. These are spreadsheet,
graphics, and word processing programs. As mentioned at the outset, the

intent of this section is primarily to illustrate applications, and not to
provide the type of detailed instructions provided in Sections 2.1 - 2.4.

These programs are, for the most part, easy to use. The most detail is

provided on the steps involved in using spreadsheets. This instruction is not
specific to any one spreadsheet product since they all function in basically
the same way. The major task in learning to use them is becoming familiar
with their commands.

2.5.1 Spreadsheets

A spreadsheet is simply an electronic method of data manipulation. The
spreadsheet program which we have used for this application is called "Perfect
Calc". It is identical in function to such programs as "Visi Calc" and
"Multiplan". Some spreadsheet programs, such as "Lotus 1-2-3", combine
graphics and word processing capabilities in one integrated package.

A spreadsheet functions as a two-dimensional data array as shown in Figure
2-42 (see next page). Each array consists of vertical columns and horizontal
rows. Perfect Calc has a single spreadsheet capacity of 50 columns and 250
rows of data.

The great advantage of a spreadsheet is its ability to instantly recalculate
data. By constructing a series of simple arithmetic formulas, the spreadsheet
will recalculate all designated values the moment you change one piece of

data

.

2-55

abcdefghi etc.

FIGURE 2-42. SPREADSHEET DESIGN

Below, we describe three spreadsheet applications: financial planning, budget
management, and performance measurement. The most detailed explanation of the

steps involved in using a spreadsheet is provided in Section 2. 5. 1.2, using
spreadsheets for budget management.

2.5. 1.1 Using Spreadsheets for Financial Planning

Figure 2-43 contains a spreadsheet which we have established to plan CAR's
budget for the upcoming fiscal year. All the data is contained on a single
spreadsheet and is completely interactive. This spreadsheet will enable the
manager to conduct an endless series of "what if" scenarios in developing a

budget. For example, suppose the manager does a first run-through and
discovers a negative funding imbalance of $10,000. The manager might in

effect say to him or herself "what if I could set an extra $10,000 from Title
III, or what if I cut $10,000 from driver salaries"? By simply inputting
these values, all totals will be recalculated on the spreadsheet.

There are four components to this spreadsheet model:

• I. Direct Expenses - Direct expenses are allocated among programs by
function. In allocating these costs, the manager uses his or her

operational knowledge to assign costs. For example, trips to

nutrition sites are often much longer than trips to health care
facilities. Therefore, a greater share of drivers costs are allocated

2-56

CAR PROGRAM BUDGETS

I DIRECT EXPENSES

Category Nutri Health Therapy ADC Dialysis Sp Ed Med/Bos Med/Pd TOTAL

I. Direct Costs

A. Personnel

Dispatcher 24G5 5164 377 913 216 806 1135 484 11560

Drivers 37B39 19372 4820 12609 2313 10602 4280 6420 97455

Siib-Drivers 3602 4312 1338 2743 707 2027 302 529 15560

Fringe 6123 3803 806 20% 392 1768 1330 1261 17579

TOTAL A 4922S 32651 7341 18361 3628 15203 7047 8694 142154

B. Other Direct

Equipnent 1440 800 200 520 120 480 160 280 4000

Gas/Oil QttlAW0V CAAAuWw 1250 3250 750 TAoa 1000 1750 25000

!>laintenance 3600 2000 500 1300 300 1200 400 700 10000

Insurance 10187 5659 1415 3679 849 33% 1132 1981 28298

Licenses 117 65 16 42 10 39 13 23 325

Cotoiunications 2460 2686 4^ 617 430 693 552 470 8560

Space 1800 1000 250 650 150 600 200 350
CAM
3OTV

Utilities 900 500 125 3S5 75 300 100 175 2500
A

TOTAL B 29504 17912 4206 10383 2684 9708 3557 5729

V

83683

TOTAL DIRECT (AftB) 78733 50563 11547 28744 6312 24911 10604 14423 225837

FIGURE 2-43. FINANCIAL PLANNING

2-57

Ill VEHICLE HOUR CHART

OMcription Dutri Health Therapy ADC Dialysis Sp Ed NmI/Bos Kfd/Pd TOTAL

A1 Dodgi Haxi (76) (lift) 5.0 5.0 10.0

A1 Dodge Naxi (76) (raap) 5.0 3.0 8.0

A3 Dodge Haxi (76) (lift) 3.0 5.0 2.0 10.0

M Dodge Haxi (76) (raep) 5.6 2.0 2.4 10.0

B1 Dodge Haxi (79) (lift) S.6 3.0 8.0

BS Volki Bm (74) (7) S.B 5.0

B3 Dodge Haxi (77) (12) 4.5 5.5 10.0

B4 Dodge Haxi (77) S.B 2.0 7.0

B5 Dodge Haxi (77) (12) 6.1 6.0

Cl Dodge Haxi (76) (12) 7.0 7.0

C2 Volks Bus (74) (7) 6.0 6.0

C3 Dodge Haxi (77) (lift)

SPARE
oftftag

4.0 4.0

Total Vehicle Hours 32.5 18.6 5.0 12.0 2.4 10.5 4.0 6.0 91.0

t of Total Vriiicle Hrs 35.71 20.44 5.49 13.19 2.64 11.54 4.40 6.59 100.00

Category Nutri Health

lib INDIRECT EXPENSES

Therapy ADC Dialysis Sp Ed Hed/Bos Hed/Pd TOTAL

II. Indirect

A. Personnel

General Hanager 6889 3943 1060 2544 509 2226 848 1272 19289

Financial Hanager 4718 2700 726 1742 348 1524 581 871 13210

Prograa Assistant 3577 2047 550 1321 264 1156 440 660 10016

Clerk/Typist 3297 1887 507 1217 243 1065 406 609 9231

Training 261 154 41 99 20 87 33 50 754

TOTAL A 18750 10731 2885 6923 1385 6058 2308 52500

B. Other

Travel 357 204 55 132 26 115 44 66 1000

Printing/Supplies 714 409 110 264 53 231 88 132 2000

Advertising 179 102 27 66 13 58 22 33 500

Legal/Audit 1071 613 165 396 79 346 132 198 3000

Postage 286 164 44 105 21 92 35 53 800

TOTAL B 2607 1492 401 963 193 842 321 481 7300

TOTAL IWIRECT (A(B) 21357 12223 3286 7886 1577 6900 2629 3943 59800

FIGURE 2-43. FINANCIAL PLANNING (Cont'd)

2-58

Ill INCQHE

Funding Source Nutri Health Therapy ADC Dialysis Sp Ed Med/Bos Med/Pd TOTAL

Title III 80000 80000

Title VII 78900 78900

Title XIX 10000 10000 18000 6000 8000 46000

Title XX 18000 1500 1500 1000 88000

Nursing Hoees 18000 18000

Schools 87000 87000

CETft 6S75 5490 7630 19695

Donations
eOAA
uOTO 8000 8000 1000 6000 5000 81000

Rehabilitation 8000 8000

CCRTA 18685 80357 39048

Other 4000 4000
A

TOTAL INCOME 103160 68357 13500 33500 8000 89000 13490 16630

U

885637

% of Total Incoee 36.18 83.93 4.73 11.73 8.80 10.15 4.78 5.88

TOTAL EXPENSESa&IIb) 100090 68786 14833 36630 7889 31811 13833 18366 885637

% of Total Expenses 35.04 81.98 5.19 18.88 8.76 11.14 4.63 6.43

BALANCE -3070 -5571 1333 3130 -111 8811 -857 1736 0

FIGURE 2-43. FINANCIAL PLANNING (Conc'd)

2-59

to nutrition trips. On the other hand, since most nutritional trips
are prescheduled, they are less of a burden on dispatchers than are
health care trips. Both the horizontal and vertical totals are
automatically calculated by the spreadsheet as a result of simple
summation formulas created by the user.

• II (A & B) Vehicle Hour Chart and Indirect Expenses - These two parts
of the spreadsheet are interactive with each other. In I la, the
manager allocates each vehicle's service hours to specific programs.
Through the use of a formula, the spreadsheet will calculate the
percentage of total vehicle hours accounted for by each program.
These percentages are then used to calculate indirect expenses on part
lib. The manager first determines the total cost of each function.
Since indirect expenses do not vary by program like direct expenses
(the General Manager does not necessarily spend more time on one

program than another), it does not make sense to individually assign
these costs. Instead, each program is assigned the percentage of
indirect costs represented by their percentage of total vehicle
hours. Thus, nutrition accounts for 35.71% of the vehicle hours, it

will account for the same percentage of each indirect expense item.
These values will be automatically calculated by applying in a formula
the appropriate percentage to the total cost of each item.

• III. Income - The final component of this spreadsheet performs the
same type of calculation on the income side of the ledger. Then,
income can be contrasted with expenses. The spreadsheet will combine
the values previously determined for total indirect and direct
expenses, and then compare this new value to the total income line.
The bottom line is the balance. As one would hope in establishing a

budget, the value in the lower right-hand corner is "0", meaning that
total anticipated expenses equal total income. In reaching this
figure, however, you can see along the bottom line that each program
is slightly out of balance to some extent. This is inevitable,
although the manager might well be concerned about the $5571 deficit
in health care financing.

Once established, this spreadsheet can be used year after year by simply
changing the values as needed. Through simple commands, new lines or columns
can be added or deleted. It is also easy to alter the width of columns.

2. 5. 1.2 Using Spreadsheets for Budget Management

The spreadsheet developed in Section 2.5. 1.1 was a relatively static document,
developed once a year and then set aside until the following year. The

spreadsheet shown in Figure 2-44 is an active document to be employed during
the course of a fiscal year to track the agency's progress toward the

previously established budgetary goals. A more detailed explanation of how to

construct and use this spreadsheet is provided below.

The construction of the spreadsheet in Figure 2-44 is a relatively straight-
forward task. The first step, as in the development of a data base, is to

conceptualize the substance and design of the spreadsheet. In this case, our

2-60

SSSSSSSSSSSS S 9

S!S!3»«St5SI S

«3S3«SlSSt 3

i

999
IN'

^ ti <*

SS = Ri£nS3)QS3fS S S

(0 •« in -H fu

SSSSSSSSSSSfS !S a

p^iiiPi^r I I

222s?isasa!Q*sa a a
gg!^fig^E-s|(5- I i

9 S
•« 95

S I
C3

9
1

S I

ss

II

S iT

S
3i

33S3SaC^8S333 3 S

S3«SSS5SK}33S 3 3

^2K}ass3S333s 3 e;

gp-'-a^gl-oJi--
(5 i5

&S3iF;Sa33SS3S 3 3

3t:3SS3SS333S ^ ^
R*®**gg®*S5?* g g

C£5<

e?Q
oo

I

CV4

cel

C3

s s

II
S=a33SS3333S 3 3

^ Xi IX.
35

SI

I I *J!
1 - S - S

^ = 3 f|l
lirllllaBl is

I “8 -5 2 8

ailiJsISisf RS e

2-61

objective is to track income and expenses by transportation category. We want
to accomplish this tracking on a monthly and year-to-date (YTD) basis on the
same spreadsheet .

Most spreadsheet programs offer a variety of design options which can be
implemented by simple commands. For example, in Perfect Calc, the user may 1)

change the width of columns; 2) justify (left or right) or center entries; and

3) determine the display format (i.e., number of decimal places, etc.). In

this example, the "category" column has been widened; the column headings have
been centered; and a standard two decimal display format selected. Ideally,
the user should make this type of design selection at the beginning of the
process. Changes can, however, be made at any time either globally
(throughout the spreadsheet) or column/line specific.

The user enters data into the spreadsheet simply by typing the appropriate
letters/numerals. If the first digit is a letter, the program will

automatically assume that a "label" is being entered. If the first digit is a

numeral, the program will assume "number". The user should follow specific
spreadsheet conventions for combining letters and numeral s in a single data
entry.

In Perfect Calc, active data entry appears in the lower left-hand corner of
the screen. This entry can be inserted into the spreadsheet by hitting
"return" or any of the cursor control keys. The entry will immediately
reappear on the spreadsheet at the position where the cursor had been located.

There are several common spreadsheet features of which users should be aware.
As spreadsheets grow in size, the user will need to "move around" the
spreadsheet quickly and efficiently. This can be accomplished either by

moving the entire spreadsheet so that a different portion is visible on the
screen (or "window"), or by moving the cursor to different locations on the
spreadsheet. Spreadsheets can be moved up and down, or side to side. The

cursor can usually be moved to the beginning or end (or top or bottom) of
lines and columns, or to any specific location on the spreadsheet. These
movements can be accomplished by means of single commands. Perfect Calc has

the added feature of being able to divide the screen in half either vertically
or horizontally. In Figure 2-44 this would permit the user to view the
"category" and "new total" columns simultaneously (for example).

Efficient editing is a major selling point of spreadsheets. Columns and lines
can be added or deleted, causing the rest of the spreadsheet to adjust in

response. Data entry items can be edited so that a single digit can be

corrected without retyping the whole item. Data items can also be easily
deleted.

Spreadsheets perform their basic computational function by means of simple
arithmetic formulas inserted by users. To create a formula, it is necessary
to enter the formula "mode". In Perfect Calc, this is accomplished by

entering "=". Formulas are created by means of column and line coordinates.
For example, in Figure 2-44, the amounts in the "Monthly Total" column would
be obtained by summing the values in the previous columns. In Perfect Calc,

columns are referenced by letters and lines by numerals. Thus, the first

Monthly Total amount ($10163. 2U) appears in column "j" on line "7" (including

2-62

blank lines, underlining, and titles). Thus, by positioning the cursor at
this location and entering the formula mode, the user will receive the

following prompt: j7=. The user would then enter the following formula:
"sum (b7:i7)". This formula, in Perfect Calc, instructs the program to add
all the values between "b7" and "i7".

Of course, you will want to replicate this formula across each line of data.
Again, this can be easily accomplished by means of a series of commands. The
formula does not need to be reentered line-by-line by the user.

This spreadsheet is intended to assist the manager in tracking funds on an
accrual basis. An important feature of managing a government funded program
is the wide disparity in time between when income and expenses are "accrued"
and when they are translated into "cash-in" and "cash-out". This makes it

difficult for the manager to track progress toward predefined budgetary goals.

The spreadsheet in this example enables the manager to track expenditures both
by transportation program (the vertical columns) and by budget line item (the
horizontal rows). One can observe several significant trends on this
spreadsheet. Most significantly, expenses are outstripping income by $4604 as
of April. (The CAR fiscal year ran from October 1 to September 30, so this
represents one month more than half a year.) Contributions from Elder
Services ($28,963) are far behind the projected pace ($114,900). This gap has
been filled in by the CCRTA which has already provided almost double ($71,148)
its anticipated contribution ($39,042). No funding at all has been received
from CETA and Rehabilitation.

On the expense side, salaries are running slightly behind the budgeted pace
($86,098 to $177,075 for the whole year). On the other hand, the energy
crisis of 1979 has impacted fuel costs (already $14,791 out of $25,000
budgeted) and the age of CAR's fleet has finally caught up with it as
maintenance costs ($15,859) have already exceeded the budgeted amount

($10,000). A manager, observing these latter two trends, might have taken the
step of reducing labor costs to stay within the total budget. In this way,
managers are able to know at all times where they stand in relation to overall
budgetary goals and constraints.

The spreadsheet in Figure 2-45 performs a similar function by looking at a

different set of categories. This spreadsheet tracks actual cash flow, as
opposed to accrued expenses. Like the spreadsheet in Figure 2-44, it can be
created once at the beginning of the fiscal year with new data added each
month. Assets and liabilities will be totalled each month and compared in the
"cash balance" line. The cash balance for all of the months will be summed
and reflected in the bottom line "net balance for year".

2.5. 1.3 Using Spreadsheets for Performance Measurement

The spreadsheet shown in Figure 2-46 uses some of the same statistics
developed in the R:base report called "vehstats".

2-63

Category

Current Assets

Checking Account

Savings Account

Petty Cash

Fixed Assets

Office Equipaent

Vehicle Equipment

Other Assets

Security Deposits

Accounts Receivable

TOTAL ’ASSETS:

Current Liabilities/Funds

Payroll Taxes Uh

Adv froa Elder Serv

Uncollectable Medicaid

Capital Equip Fund

Accounts Payable

Loan Payable

Advance froa CCRTA

TOTAL LIABILITIES/FUNOS

CASH BALANCE

NET BALANCE FOR YEAR

CAR CASH BALANCE

October Noveaber Oeceaber January February

3330.84 2763.68 381.89 8467.94 6586.74

5187.08 4253.84 4261.84 306. 14 397.18

30.00 30.00 30.00 30.00 30.00

1610.00 1610.00 1178.84 1178.84 1178.84

479. 17 479. 17 354.17 354.17 354.17

1688.00 1688.00 1369.00 1369.00 1369.00

14767.00 9588.00 31807.00 28261.00 28361.00

27092.09 20412.69 39382. 74 39967.09 38276.93

1629. 10 1763. 10 1598.34 1607.57 1660.92

6000.00 6000.00 6000.00 6000.00 6000.00

2573.08 2573.08 1671.49 1671.49 1671.49

10000.00 lOAAA OA
i vQ 10000.00

6067.64

10000.00 10000.00

2995.00

wTDVa Ov 5960.80 12206.92 12206.92 12206.92

26162.98 26296.98 37544.39 31485.98 34534.33

929.11

2821.39

-5884.29 1838.35 8481.11 3742.60

March April May June July

5872.09

508.53

30.00

1178.84

354.17

1369.00

49850.00

59162.63

2429.71

6000.00

1671.49

10000,00 10000.00 10000.00 10000 .

14240.00

17206.92

13900.00

65448. 12

-6285.49

FIGURE 2-45. BUDGET MANAGEMENT - II

2-64

VEHiaE STATISTICS MAY

Vehicle 1 Hours Miles Fuel Oil FAQ Cost MP6 Rep Cost

A1 50.00 790.00 53.70 2.00 A5.72 1A.71 A5.00

AS AS. 50 1S73.00 89.60 2.00 73.58 1A.21

A3 39.50 76S.00 93.50 75.85 8. 15 25.75

BA 3S.S0 A8A.00 A3.S0 35.50 11.20 100.00

CS 39.75 1016.00 59.70 2.00 A8.60 17.02

Total S0A.S5 A3SS.00 339.70 6.00 279.25 12.73 170.75

FIGURE 2-46. PERFORMANCE MEASUREMENT

As should be apparent by now, our spreadsheet program is far more nimble and
versatile at performing arithmetic calculations than is R:base. Other data
base managers such as Knowledgeman are far stronger in this area than is

Rrbase, but they tend to be much harder to use. The user must determine which
characteristic is more important for their own uses, and how best to perform
each function. No data base manager is as good at calculations as spreadsheet
programs unless, as in the case of Knowledgeman, they integrate a spreadsheet
right into the program.

The extent of integration between a data base manager and a spreadsheet
program depends on the characteristics of each program. If integration
requires little manipulation, it may be worthwhile to attempt to transfer data
directly between the two programs. That was not the case with R:base and

Perfect Calc, however, so we took this data off of R:base reports and entered
it manually into Perfect Calc. On the other hand, our word processing
program. Perfect Writer, works quite well with Rrbase and we provide in

Section 2.5.3 an example of moving data directly between these two programs,

2.5.2 Graphic Applications

The next two figures demonstrate the tremendous potential of graphics
software. In Figure 2-47, we have used our graphics program to produce a pie
chart of some data generated by the Rrbase report "trips". As you recall (see

Section 2. 4. 2.1), this report could generate ridership statistics
disaggregated in any fashion we chose. In this case, we have analyzed the
data by passenger classification. By entering this data into Fast Graphs, we
were able to obtain a graphic portrayal of CAR's ridership characteristics for

the case study week of May 7-11, 1979.

The three dimensional bar graph in Figure 2-48 is based on the Perfect Calc
financial planning spreadsheet displayed in Figure 2-43. This file assigned
percentages of total expenses, total income, and vehicle hours to each
program. As we can see in this graph, there are no gross anomalies present in

the allocation of costs, expenses and vehicle hours.

Again, the degree of integration between graphics and other applications
software varies greatly. In most cases. Fast Graphs can read a Perfect Calc
file. However, despite being sold as an integrated package, we discovered

2-65

PASSENGERS BV CLASS - HAV 1979

43X

EUeply

EHeply Handicapped

Handicapped

Mheelchaip Handic.

Uheelch. Elderly Hdc

FIGURE 2-47. CAR'S RIDERSHIP CHARACTERISTICS

2-66

CAR PROCRAM BUDGETS

Nutpi Health Thepapy ADC Dialysis Othep

CATEGORIES

WA of Total Uehicle Hps UA of Total Incone BA of Total Expenses

FIGURE 2-48. COMPARING CAR'S INCOME/EXPENSE/VEHICLE HOURS BY PROGRAM

2-67

that Fast Graphs was not compatible with our printer (which is compatible with
Perfect Calc), and could not read Perfect Calc values which had been generated
by formula as opposed to direct data entry. These problems have been
corrected in an updated version.

Lotus 1-2-3 provides a completely integrated spreadsheet and graphics
capability, but a far weaker word processing program than Perfect Writer (see
the following section).

2.5.3 Integrating R:base with a Word Processing Program

Since R:base has the capability of writing ASCII data files (using the
"output" command), most word processing programs can automatically (i.e.,
without any modification) read those files, and manipulate them using its own
set of command. Thus, data stored in the R:base master client file, such as,
names, addresses and other client information, can be transferred to a word
processing program without retyping the data.

This characteri Stic enables us to integrate both programs in order to produce
personalized documents that are basically created using "Perfect Writer", but
that also use sets of data (or a few pieces of data) created by, and stored
in, R:base.

Unfortunately, the integration is not always 100% perfect. Some manipulation
(i.e. "reformatting") of the file created by Rrbase is necessary to adapt it

to the needs of the word processing program. This is the case in the example
presented below, using the program "Perfect Writer".

Suppose that our purpose is to write some personalized letters to all those
CAR patrons whose Title XX units are about to expire, and we want to inform
them of this situation. We need the following pieces of information from
R:base:

0 first and last names
0 address
0 city and zip code
0 Title XX units remaining

All these items are stored in R:base in the relation called "msclient" under
the attribute names "frstname", "lastname", "address", "city", "zip" and
"xxunits" respectively. Use the "output" and "select" commands (inside
R:base) as shown in Figure 2-49 to write an ASCII file called "brtext.mss"
that contains all those fields with the information for which you are
looking. This file is immediately accessible by Perfect Writer, typing the
command (in MS-DOS): "A> "pw brtext.mss".

R> output brtext.mss with terminal
R> select frstname lastname address city zip xxunits +

R> from msclient where xxunits le 02

FIGURE 2-49. FILE OUTPUT COMMAND

2-68

File output is shown in Figure 2-50:

frstnam* lastnama address city zip mkunits

Claire O'Rourke Windmill Vi 1 lag Dennis 02638 02
Ethel Downey 109 Upper Ct Dennis 02638 02

FIGURE 2-50. SAMPLE OUTPUT FILE

Once inside Perfect Writer (and inside the b:text.mss file), we manipulate the
file, using Perfect Writer commands, until the appearance of it is as shown in

Figure 2-51. In doing so, we have created two separate files called
brtestl.mss and b:test2.mss. Each file contains the data for one client. The
manipulation consists of using the perfect writer editing functions to group
the words and sentences, and adding the following Perfect Writer commands:

• String
• Flushleft
• Val ue

A brief description of these Perfect Writer commands is provided at the end
of this Section.

08TRIN6 (addr«ss»"Claire O' Rourke
Windmill Village
Dennis, m 02638")
©STRING <kx»"02")
©STRING (name*"Ms. O'Rourke")
©FLUSHLEFT-C©VftLUE (address) >

b:te^tl.mss

©STRING <address="Ethel Downey
109 Upper Ct.
Dennis, MA 02638")
©STRING(xx»"02")
©STRING (name«" Ms. Downey")
©FLUSHLEFT-C©VALUE (address) >

b:test2.mss

FIGURE 2-51. REARRANGING THE OUTPUT FILE WITH PERFECT WRITER

Once these two files have been created, we also use Perfect Writer to create
the body of our letter. The letter is contained in the file "b:mail .mss"

.

This letter is shown in its preformatted Perfect Writer format in Figure
2-52. With this letter edited, our task is completed. The result, a

personalized letter, is shown in Figure 2-53. The name and address of the
client, as well as the number of Title XX units remaining were taken directly
out of the R:base relation "msclient".

Following is a brief description of the Perfect Writer commands which appear
in Figure 2-52.

t Incl ude (filename. mss) instructs Perfect Writer to insert the file
named between the parentheses into the text of the file being
printed. Don't forget the disk drive extension "b:". Following the

insertion of the file defined in this manner. Perfect Writer continues
printing the letter file "b:mail .mss". Our one-time R:base file is

now inserted into this Perfect Writer file.

2-69

0PftGEFOOTING()
I? INCLUDE <b: tests, mss)

©FLUSHRIGHT-Cftpril 1, 1984}

i?FLUSHLEFT-CDear ©VPLUE (name) ;>

This letter is to inform you that you have only @VfiLUE(xx) Title
XX units left for your use in utilising our services.

Since we can not provide you with more t ransportat ion services
once the units are totally consumed, we urge you to contact your
Human Services Represent at i ve to authorize more Title XX units
for your use.

We thank you for your underst and ing, and hope we will hear from
you soon so that we may continue to meet your t ransport at ion needs.

0FLUSHLEFT (Sincerely yours,

)

Perfect Writer Version 1.00 (Wrap) mail: B:MPIL.MSS -•0!X-

(c) 1983, Perfect Software Inc. — Type ESC ? for help

FIGURE 2-52. SAMPLE LETTER WITH PERFECT WRITER COMMANDS

2-70

April 1, 1984

Dear Ha. *:

Thla letter ia to inform you that you have only 02 Title XX units
left for your uae in utilizing our services.

Since we can not provide you with more transportation services
once the units are totally consumed, we urge you to contact your
Human Services Representative to authorize more Title XX units for
your use.

We thank you for your understanding, and hope we will hear from
you soon so that we may continue to meet your transportation
needs.

Sincerely yours.

General Manager
CAR

FIGURE 2-53. FINAL SAMPLE LETTER

2-71

• String/Value (variable name - string text). The string command (as

shown in Figure 2-51) assigns a definition (string text) to a variable
name. The value command inserts that definition into the text. Thus,
values have been assigned in Figure 2-51 to the variable names "xx"

and "name". The value for "name" is inserted into the salutation of
the letter. The value for "xx" (the number of remaining Title XX

units for the addressee) is inserted directly into the appropriate
location in the body of the text.

t Pagefooting suppresses the printing of page numbers.

• Flushleft aligns the text enclosed by parentheses to the left-hand
margin.

2-72

3.0

USER OPTIONS

The purpose of this chapter is to provide the user with a variety of options
for the use of data base management software in paratransit management.
Section 3.1 below ("Variations on Chapter 2.0 Applications") describes some
options which the user might want to consider in designing their data base
management system. This section covers only those applications discussed in

Chapter 2.0 ("Automating the CAR data base"). Of necessity, instructions for
implementing these options are brief and completely non-R:base specific. The
user who has absorbed the information in Chapter 2.0 should be able, with the
assistance of a specific software manual, to apply these options using any
similar piece of software.

Section 3.2 below ("Other Data Base Applications") is intended to provide the
user with a brief overview of some other potential applications which were not

discussed in Chapter 2.0

3.1 VARIATIONS ON CHAPTER 2.0 APPLICATIONS

In this section, we discuss options based on the general operating procedures
of the user agency; the attributes (fields) available for inclusion in

relations (files); and desired reporting requi rements.

3.1.1 General Operating Procedures

Four issues present themselves regarding the general operating procedures of
the user agency: 1) the type of transportation service being offered; 2)
service level requirements; 3) the location of the scheduling/dispatching
function; and 4) the degree of interaction with a live customer on the
telephohe. Each is discussed below.

3.

1.1.1

Service Type

While Chapter 2.0 was written specifically for the standard demand-responsive
model of many origins and many destinations, it could be easily adapted to any
client-specific paratransit mode. For example, checkpoint and route deviation
have become increasingly popular hybrid models between the standard forms of
demand-responsive and fixed-route service. In checkpoint service, some
passengers are picked-up at designated gathering spots (i.e., bus stops),
while others are picked-up in a demand-responsive mode. Similarly, route
deviation services offer to deviate off of a fixed-route to pick-up passengers
in response to phone-in demand.

In both cases, the pre-scheduled files used in Chapter 2.0 could be replaced
with route-specific schedule files. These files would provide a dispatcher
with a written "picture" of the standard route to be operated by each
vehicle. Information might include scheduled stops, roads traversed, major
activity centers, etc. When a demand-responsive call is received, the
operator, instead of checking the prescheduled file for vehicle availability
as in Chapter 2.0, would check the vehicle schedule files and book the trip
accordingly. A report could then be generated in the same way as in Chapter
2.0, showing each driver their particular routing for the day.

3-1

3.1. 1.2 Service Level Requirements

A great deal of emphasis is placed in Chapter 2.0 on the advantages of
prescheduling standing trips to take maximum advantage of automated scheduling
systems. There are two reasons for this recommendation. First, by
prescheduling the bulk of trips, a stable route structure can be developed
which is familiar to customers, drivers, and dispatchers alike. This tends to
assure the most reliable service for the most regular customers, a worthy goal

of any business. Second, by requiring a minimum of 24-hour in-advance
reservations for non-preschedul ed trips, the user will have sufficient time to
solidify routings for the next day and provide each driver with a hard copy
schedule print-out.

Before undertaking the use of data base management software for scheduling
purposes, the user must confront the issue of service level requirements.
There are two predominant trends in the paratransit field today. One theory
advocates ever increasing advanced scheduling to better match the service
predictability and reliability of the fixed-route. This tendency accounts for
the increasing popularity of the checkpoint and route deviation models
discussed above. The other theory advocates the elimination of all

prescheduling requirements to better emulate the spontaneous nature of riding
a fixed-route. This latter approach requires a far greater investment in the
scheduling process in order to maintain desirable vehicle load factors and
schedule predictability.

The choice of one model over the other depends on which element of the
fixed-route service the user values most highly - predictability/reliability,
or the lack of advanced planning needed by a customer to use it. We think the
choice may depend on the agency's client base. The prescheduling model best
serves the regular rider. The occasional rider must fit into a schedule built
around the needs of the regular users. This model is most appropriate for the

system which is still primarily client/agency specific (closer to a Section
16(b)(2) system than a true Section 18 general public system). Most of this
system's riders will be regular users and should receive priority service.

The real time model places the occasional user on an equal footing with the
regular riders. This is clearly more appropriate as the system moves toward a

more truly "open to the general public" status.

Both models require the user to make several choices prior to automating the
scheduling function. First, you must select a cut-off time for real time
trip reservations. Given the preference of our case study operator for the
prescheduling model, we imposed the standard 24-hour advance reservation

requirement in the system we established in Chapter 2.0. This is really the
bare minimum amount of time needed to print-out driver schedules at the end of

each day. In a system with more than a few vehicles, this could prove quite

tense. If the emphasis is on prescheduling, we recommend considering a

48-hour cut-off. However, if the emphasis is on obtaining true "real time"
operation, you may want to eliminate advance reservation requirements
enti rely.

3-2

Second, you need to consider how to group your prescheduled trips. In Chapter
2.0, we recommend two options; each day of the week or a MWF/TTh pattern. Of

course, any such pattern is feasible given the demands of your system. You

might also want to consider incorporating an "every other week" element if

that fits your service pattern. The simpler the pattern (such as MWF/TTh),
the easier it is to perform the prescheduling function (since you need to

create fewer unique files). However, if your trip pattern does not conform to
such a simple model, you won't gain anything by trying to over-simplify it.

The third factor to consider is how far in advance to preschedule.
Operational ly , the further in advance, the better (although we don't recommend
more than a month because there are apt to be too many changes). In Chapter

2.0, we discussed prescheduling at one week and one month intervals. Since
you will need to maintain a preschedule file for each active date, the further
in advance you preschedule, the greater will be the demand on your disk
storage space. It is hard to imagine prescheduling for a month without hard
disk capability.

The real time scheduling model also presents the user with several options.
Given the reduced amount of routing regularity inherent in this model, more
pressure will be placed on the operator to "hunt-out" the best vehicle
schedule among several likely options. Since you will want to accomplish this
search interactively with the customer on the telephone, it must be

accomplished rapidly. We strongly recommend that the schedule search be

customized so that the operator can simply respond to a series of menu-driven
prompts. See Appendix C for a description of customizing R:base.

The user must also consider the necessity of a high-quality communication
system so that dispatchers can inform drivers of real time schedule changes.

3. 1.1.3 Location of Scheduling/Dispatching Functions

The user needs to evaluate where to locate the scheduling and dispatching
functions. Chapter 2.0 was written for the small system with a single user
station. The user may require more than one station at a single site to
handle demand. If the agency provides transportation over a large service
area, it may want to decentralize scheduling and dispatching. Similarly, if

service is provided by a consortium of providers, these functions may be

institutionally decentralized.

This issue will lead the user to a consideration of the potential and
desirability of a multi-user system. Multi-user applications with
microcomputers (as opposed to minicomputers and mainframes), is still in its
infancy. Nevertheless, if your demand is sufficient to warrant providing
several clerks/dispatchers with simultaneous access to the data base, it is an

issue which must be addressed.

Multi-user capability requires a hard disk. A number of data base software
manufacturers have adapted their products for use in limited multi-user
environments. These include R:base 6000 and DB Master Advanced Edition. (UB

Master is a File Manager, not a relational data base.) So far, most
microcomputer multi-user applications include "read only" capability (hence,
the term "limited"). This means that a variety of users can access the system

3-3

and "read" data simultaneously, but they cannot "write" (i.e., update a file,
schedule a trip, etc.) simultaneously. A system of this type has been
installed at the Portland (Maine) Rural Transportation Program using DB Master
Advanced Edition.

Given the size of most rural paratransit operations, this limited capability
may be all that is necessary or desirable. Unless the system has an unusually
high volume of telephone calls, there will usually not be a problem in having
a clerk read the client's file to check for eligibility while waiting for
another user to relinquish control of the "write" facility. In fact, this
capability of "shutting out" other users who want to write (the program will
not allow it) may actually be a positive feature in a small system where
multi-user writing might prove more confusing than helpful.

This is an area witnessing rapid technological advance so the user should be
willing to investigate the latest developments. It is important to remember,
however, that what becomes technologically possible may not necessarily be

operationally desirable. The user must determine what degree of interaction
is required for effective operation among the system's sites. For example,
leasing telephone lines for continuous communications can prove expensive. In

a small system, sporadic (dial up) communications may prove adequate if the
remote sites operate relatively independently with little need to coordinate
data on a regular basis.

3. 1.1.4 Customer Interaction

A final operational decision facing the user is which functions should be
accomplished interactively with a customer on the telephone. The options
include 1) checking eligibility, 2) booking a trip, and 3) updating the master
client file.

As described in Chapter 2.0, we recommend performing all three functions
interactively. The advantage of this approach is that it eliminates
time-consuming "middle steps" such as recording data temporarily either
manually or on the computer for later integration into the main files; and
calling back customers to inform them of the outcome of their trip request
(either the details of the booking or the unfortunate fact that a trip could
not be booked due to scheduling conflicts or eligibility problems).

In addition, the interactive approach (as the name implies), allows the
operator to interact with the customer to resolve scheduling conflicts,
eligibility questions, out-of-date client data and the like. The problem in

achieving successful interactive functioning is the need for processing
speed. To put it quite bluntly, customers have better things to do with their
time than wait on the telephone while an operator hunts-out information on a

computer.

Of the three potentially interactive functions, the least important is

updating the master client file. Clearly, this can be performed later at

minimum cost to operating efficiency. We feel that not to perform the other
functions interactively is not to take advantage of automating the scheduling

function. For that reason, the customizing example in Appendix C focuses on

these three functions. By customizing these applications, you will be able to

3-4

perform them far more quickly than using the standard R:base commands as

described in Chapter 2.0. For example, in Chapter 2.0 we recommend printing-
out a hard copy of the client master file for reference in checking client
eligibility. This can be an inefficient technique in a system with a large
number of clients. Customizing this application will enable you to perform
this function fast enough to effectively automate it.

3.1.2. File Attributes

Defined below are a number of alternative and additional attribute (field)
definitions which the user should consider in developing relations (files).
Included are choosing a key field, and selecting and defining client, trip and

vehicle specific fields.

3. 1.2.1 Choice of Key Fields

As discussed in Chapter 2.0, the selection of key fields in R:base is not
crucial because data can be accessed by all fields. The only trade-off is

between processing speed and disk storage space. However, many other data
base managers require the. designation of primary and secondary key fields for

accessing data. Therefore, this is an important consideration for users in

beginning to automate their systems.

Clearly, you will want to access data by means of a reference to the client as
a unique entity. In Chapter 2.0, we assigned each client an ID number. For

all but the smallest systems, we recommend the use of ID numbers as the prime
means of accessing individual client data. Unlike a last name, you can

guarantee that it will be unique.

If you do use a client ID, we also recommend that you continue to use last
name as at least a secondary key. Many clients will not be able to provide an

ID number on the telephone. In such cases, you will have to revert to access
by last name.

Other fields which you might want to consider as keys include city/town/
county; human service program numbers; and trip purpose, pay code or passenger
classification. The selection of key fields is dependent on how you perceive
your data needs particularly in the area of cost allocation/billing and
performance evaluation. For example, if you bill human service programs and
political jurisdictions by ridership levels, you may want to rapidly access
data by town of origin or the client's human service program number.
Similarly, if knowing the number of elderly riders is important for evaluating
the success of your program, you may want to access data by passenger
classification.

3. 1.2.2 Client Specific Fields

There are a number of options which the user might want to consider in

designing the master client file. For example, to economize on disk storage
space you might include only the client's first initial instead of full first
name. We do think that providing operators with client first names permits a

more personalized approach. Also, with a large client base, you may transport
several members of one family. Using initials can cause considerable
confusion.

3-5

For client address, we collected only street address since Cape Cod,
Massachusetts, is composed primarily of single family homes. If your service
area has a large number of apartment complexes, we recommend including a field
for apartment number. For political jurisdiction, we included "city" because
this is the basic unit of government on Cape Cod. You may prefer to
substitute or add county and/or neighborhood. If you provide service across
state lines, be certain to include a state field. Similarly, if you provide
service to more than one telephone area code, you will need a larger telephone
field than we included.

We included a "birthdate" rather than "age" field because it requires less
frequent update. An age field requires annual update so that you can track
when clients cross the elderly threshold. A birthdate field simply needs to
be checked each year.

Depending on your data collection requirements, you may want to add an
"unduplicated trip" field to the master client file. Many programs are
required to track the number of unique riders they carry each month. In other
words, while a system may make 1,000 trips per month, only 100 people may
account for those trips. As set-up in Chapter 2.0, the only way to count
unduplicated passenger trips would be to print-out all trips taken in the
month and sort by client ID. You would then have to go through the list
manually and count unduplicated riders. In a larger system, this could be

tedious.

An alternative is to create a one-column field in the master client file.
This field would have only a single possible data entry, either a "y" (yes),
"1", or "x". Each month, the appropriate value will be entered into each
client's record the first time they book a trip. For each subsequent call,
the operator can check to see whether an entry has been made in this field
(has the client already used the system this month?). At the end of the
month, you would simply need to select those records which contained the value
to obtain a list of unduplicated riders. The list could be added manually or

you could add a "counter" function similar to that included in some of the
reports in Section 2.4. This would add the trips automatically.

As a final step, you will need to delete all the entries to start fresh
during the next scheduling period (month or whatever). If you book trips over
more than one month simultaneously, you will need to use more than one coding
symbol (i.e., 1 = January, 2 = February).

3. 1.2.3 Trip Specific Fields

There are a number of options available to the user in designing the vehicle
schedule files (prsched, realtime, etc.). As discussed in Section 2.3.3, you
may want to include a "trip day" code in the preschedule dummy file to assist
in projecting out date-specific preschedule files. The codes should relate to

whichever grouping method you have selected (daily, MWF, etc.).

Other simple code fields can be added to meet specific! data requirements. For
example, suppose you wanted to measure unmet demand among realtime trip

requests (people whose travel needs cannot be served). This could be

accomplished through the addition of a one-column field to the realtime file.

3-6

When a caller requests a trip, the operator would automatically code all the
appropriate data fields and then add either a "y" (yes) or "n" (no) to the new
field to indicate whether the trip was actually booked or not. At the end of

the month, you would select those records where the value equals "y" to
measure actual ridership, and those with a value of "n" to measure unmet
demand. Since the unmet demand category will contain all the relevant trip
data as if the trip had actually been booked, you can disaggregate unmet
demand by whatever criteria interest you (i.e., town of origin, destination,
age, customer).

Another data category which you might want to evaluate is "no-shows" (people
who book a trip and then don't show up for it). This might be of interest for
both realtime and prescheduled riders. Again, a one-column field could be

created to house a single value indicating "no-show". This value would, of
course, have to be entered after-the-fact of the trip when the drivers hand in

daily or weekly logs.

An issue which we considered briefly in Chapter 2.0 is the coding of trips for
which a client has multiple program eligibility. To handle this problem, we
created the "paycode" field. Thus, payment was determined not by whether the
client had a medicaid or Title XX number (or both), but by the specific value
in "paycode". This problem could also be handled by a priority scheme. For

example, local funding rules might hold that medicaid always take priority
over Title XX. Thus, a client eligible under both would be funded by

Medicaid. If the priority is not absolute but related to trip purpose, the
trip purpose field could be used in conjunction with this priority method to
determine funding. Either of these methods would eliminate the need for a

separate "paycode" field.

A variation on this problem is a trip which has several segments funded by
different programs. This would be difficult to handle in the system we
established in Chapter 2.0 since we combined both legs of a round-trip into a

single record. As discussed in Chapter 2.0, this method has the advantages of
reducing data entry time and disk storage requirements. The disadvantage is

its lack of responsiveness to non-symmetrical trip patterns. For example, a

three corner trip where a rider starts at home and goes to the doctor, the
hairdresser, and then home. Medicaid might be willing to pay for only the
first leg of the trip.

If you have frequent trips of this type, you should consider three options.
You may want to drop the single round-trip booking method and simply book each
leg of a trip separately. While this can be more time consuming and increase
your storage space requirements, it may be more responsiveness to your needs.

Another option is to add a third-leg to the single round-trip record. In

other words, instead of setting up records with round-trip fields as we did,
create fields which correspond to "trip leg 1", "trip leg 2", and "trip leg
3". This method will eliminate the need to reenter the client specific data
each time. For each leg, include the trip-specific fields which are required
for your operation. In particular, if you are apt to run into multiple
funding source complications, include a separate "paycode" field for each trip
leg.

3-7

A third option is to include at least one "return destination field". Because
we included only a single destination field, we pretty much limited ourselves
to the standard "home-destination-home" trip model. Including additional
destination fields would enable you to code the A to B to C type of trip.
This would not, however, resolve the problem of assigning each trip leg to a

different funding source.

Another field which you might want to consider adding, no matter how you
structure your trip schedule file, is drop-off time. Riders may need to know
approximate drop-off times and so including this field can be helpful in

providing more responsive customer service.

3. 1.2. 4 Vehicle Specific Fields

The automation of vehicle operations data ("vehops" relation) was not a major
feature of Chapter 2.0. Additional data fields which you might want to

consider include the following:

• Purchase order number
• Repair order number
• Next scheduled maintenance mileage
• Next scheduled maintenance level

The goal in the expansion of this file is to develop it into a truly active
preventative maintenance data base. A major weakness in keeping manual

vehicle records, no matter how well done, is retrieving and manipulating the
data for the development of an effective preventative maintenance program.
Through the addition of fields such as those listed above, and the data
manipulation capabilities of programs such as R:base, it will be possible to
develop a maintenance experience record for a fleet of vehicles. This will

enable you to anticipate and prevent significant maintenance problems.

3.1.3 Reporting Requirements

Section 2.4 describes the process of report generation in great detail and
provides some common examples of the types of reports you will likely want to
develop. Of course, the options here are literally infinite. In designing
your reporting requirements, you should consider the following questions:

t What are the goals and objectives of your system? When you understand
what you are trying to accomplish, you can better determine what you
need to measure and report on.

• What is the function of your reports? For example, most systems will,
at various times, need to produce reports for one of three reasons:

1) provide billing and/or performance data to funding sources; 2)

conduct an internal evaluation of system operations; and 3) develop
political, institutional and community support for the continued
operation/expansion of the system. In designing your reports,

consider their ultimate purpose.

• What are the operating characteristics of your system? You want to
develop reports which are responsive to the unique design of your
system.

3-8

t Are you interested in evaluating effectiveness or efficiency?
Effectiveness measures how well you are meeting the goals and

objectives of your system. For example, if your goal is to service
the elderly of your community, an effectiveness measurement would be
the number of elderly riders. Efficiency measures how well (i.e.,

cost-effectively) you produce the service. You could be meeting your
goals for elderly ridership at twice what it should be costing you.

Simply by using the fields created in Chapter 2.0 and the select/sort
capabilities of a program such as R:base, you can generate the following types
of reports:

f Client activity by age, sex, classification, town of origin, funding
program, and trip purpose.

• Vehicle utilization by time (compare the hourly driver records in

"vehops" to total vehicle availability).

• Any of the following performance measurements:

- Total vehicle miles
- Total vehicle hours
- Subsidy/passenger trip
- Trips/capita
- Revenue/passenger
- Revenue/hour
- Cost/hour
- Trips/vehicle
- Trips (by category)/vehicle
- Trips/day/vehicle
- Trips/hour/vehicle

You might also want to consider mileage-based performance measurements such as
passenger mile/vehicle or per vehicle mile; or vehicle miles/trip/(vehicle).
To do this, you need to create a mileage "look-up" table which ideally an

operator can use interactively while booking a trip. This table should be a

matrix of the type commonly found on route maps showing distances between
frequently used origins and destinations. In our case study, we would
probably use the various towns on Cape Cod for this purpose. You could also
use counties, neighborhoods, or activity centers. When the operator books a

trip, he/she would look-up the mileage on the table and enter it into a field
assigned for that purpose. Since mileages are static, it is probably easiest
to have the operator look it up from a permanent hard-copy print-out, rather
than calling the file up on the screen (although the latter can be done using
the customizing features described in Appendix C). After awhile, the
operators will tend to memorize the data anyway. You might also want to

assign codes to common 0-D pairs (i.e., Hyannis-Falmouth = 1). These codes

can then be converted to actual mileage figures in the report generation
process.

This feature can also be used for billing purposes. In fact, Call-A-Ride and
its successor did at times substitute a mileage-based fare for a flat fare due
to the tremendously large service area of Cape Cod. Instead of calculating

client, program, and town bills simply by adding the number of trips, they
could also be calculated using the mileage involved in the trips. In

generating your reports, you can instruct the program to sum the mileage
totals in the same way that we summed total trips in Chapter 2.0. You can
then apply a per mile dollar value and instruct the program to multiply this
value times the total mileage for billing purposes.

3.2 OTHER DATA BASE APPLICATIONS

In this Manual, we concentrated on a limited number of applications for data
base management software; scheduling; maintaining a master client file for

recordkeeping and eligibility verification; vehicle maintenance recordkeeping;
and report generation for billing and performance measurement purposes. There
are many other uses for software of this type in paratransit management. In

selecting a software product, the user should carefully consider the uses to
which it will be put and select a product with the appropriate capabilities
and strengths. A sampling of other functions are described briefly below.

3.2.1 Financial Management

Spreadsheets for program budgeting and monthly program financial reports were
developed in Chapter 2.0. However, the formal systems for accounting (e.g..

Cash Receipts Journal, Cash Disbursements Journal, and General Ledger) are

good candidates for customized development with a relational data base and/or
integrated spreadsheet.

While there are a number of commercially available microcomputer software
packages for home accounting or small business, they are not particularly
adaptable to small transit operations. In the former case, they are not

sophisticated enough. In the latter, the private-for-profit accounting
requirements for tax paying corporations are not proving particularly
compatible with public agency and public charity's financial management
systems.

For example, these packages are often designed to facilitate income tax

preparation, an orientation which will be of little use to the public agency
or private-non-profit which pays no income tax. On the other hand, the

capability to account for a variety of funding sources and allocate costs
accordingly (a crucial feature for the paratransit operator) may be

downplayed. These packages, like all software, are rapidly evolving and being

adapted to different uses, so the user is advised to compare their

capabilities to that of a multi-functional program like R:base.

3.2.2 Payrol

1

While technically payroll can be considered a component of the financial
management system, in the labor-intensive transit business, it has data

management significance on its own. In many instances, private non-profit
providers are dealing with the Social Security System since January 1, 1984,

for the first time.

3-10

Dynamic look-up tables and computed fields within records and reports allow
significant time saving for transit properties. Calculation of gross pay for
individuals based on hours worked, job classification, and hourly rate of pay
(the last two using look-up tables) are classic data base management
applications. In addition, subtractions from gross pay can be accomplished
quite efficiently. For example. Federal, state, and social security taxes can
be calculated and withheld using look-up tables. Locally, calculation of

payroll deductions for pension or tax sheltered plans, union dues or benefits,
Christmas Clubs and other employee-generated deductions, garnishments or
court-ordered payroll attachments can be accommodated with a computerized
payroll system.

Again, users should also investigate the potential of commercial payroll
packages. They need to be sufficiently flexible and sophisticated to meet the
unique requirements of government agencies/PNP ' s (for example, employee
deductions may be different than for a private sector employer), and capable
of integration with other features of your data base. For example, we built

our vehicle performance records from driver's logs which included work hours.
You would most likely want to avoid isolating a data item like "work hours" on

a separate payroll program and be unable to use it for other data base

applications.

3.2.3 Personnel Files

The personnel file is closely related to the Payroll File and would work well
together in a relational data base management system. Initially, the

personnel file acts as a master file for each employee employed by the
organization, and keeps basic information, such as: name of employee,
address, telephone number, date of employment, IRS W-4, salary information,
EEO and Affirmative Action base data, evaluation dates and history of actions,
and date of termination. With a relational data base interacting with the

Payroll File, accrual and use of Sick Leave, Annual Leave, Compensatory Time,

or Personal Leave are possible. Financial information for the individual,
such as year-to-date summaries on wages, taxes withheld, or special payroll
deductions are readily available.

Increasingly, personnel information is a major long-term responsibil ity of the
corporation or organization, with increasing legal implications for the
employer and employee. This is also an area that gets put off until there is

a crisis or litigation.

3.2.4 Fixed Asset Inventory

As paratransit operations mature, many programs are taking over preventative
maintenance and, to some degree, fleet repair, rather than contracting out for
these services. Inevitably, this means acquiring equipment and tools, as well

as consumable supplies. For recordkeeping purposes, these activities are

treated differently in tax-paying entities than they are in public sector
institutions. In part, this is due to the divergent views that the Internal

Revenue Service has of the concept of "capital asset" and the Urban Mass

Transportation Administration's determination of an item as "capital
equipment" eligible for "capital assistance". Since most commercial inventory
packages are written to satisfy the IRS requirements of tax paying sole

3-11

proprietorships or corporations, this could be an important area for
development on a data base management system, particularly since this is a

prime area for potential employee or contractor theft.

3.2.5 Complaints, Incidents, and Accidents

A variety of "other" information which a paratransit agency is usually
required to keep can be easily automated. These include complaints,
accidents, and other "incidents". The latter might include disputes between
employees and management or between employees and customers; medical
emergencies; traffic violations; weather-related problems and the like. Using
Chapter 2.0 as a model, files can be structured to enable the user to select
and sort data in a useful and convenient manner.

3-12

APPENDIX A
SELECTING A DATA BASE MANAGER

The purpose of this Appendix is to provide the user with a guide to conducting
a selection process for data base management software. Topics include
selection criteria; software packages available; characteristics of a good
DBMS; and procedures for reviewing products.

A-1 PRIORITIES AMONG THE SELECTION CRITERIA

Based on the needs of a typical paratransit agency, we have prioritized the
several criteria involved in the selection of a DBMS as follows;

• Ease of U se is considered to be the most important criteria,
assuming tFat the DBMS possesses the minimum functional criteria.
All DBMS packages require a minimum of several hours intensive work
to understand how they operate. We also assume a prior
understanding of record keeping systems, i.e., their design and
operation.

• Capabi 1 ities of the DBMS, i.e,, its type, size and functions that it

can perform. The DBMS should meet all the information needs of the
paratransit agency in terms of data storage, organization and

retrieval in an efficient manner (e.g., with help screens, menus,
and preformatted reports).

• Other Characteristics , such as:

- integration with other software (spreadsheet, word processors);
- transferability between machines;
- upgrade capabilities, i.e., floppy to hard disk storage; single to

multi-user environment;
- quality and readability of the documentation;
- customer support;
- manufacturer's reliability.

• Cost of the package - this criterion is of considerable importance
given the cost of associated hardware and software.

In summary, the DBMS should be easy to use by the agency staff, and have the
minimum threshold of capacity to meet its needs efficiently and at a

reasonable cost.

A-2 SOFTWARE AVAILABLE

More than 50 DBMS programs are offered in the microcomputer software market
today, and new ones appear each week. Figure A-1 lists nine of the most
popular programs. This is a representative set of the different types of DBMS
programs offered in the market.

A-1

PRODUCT MANUFACTURER

Data Base Manager II Alpha Software
Advanced DB Master Stoneware, Inc.

R:base 4000 Microrim, Inc.

T.I.M. IV Innovative Software
Knowl edgeMan Micro Data Base Systems
Open Access Software Products International
Condor 3 Condor Computer Corporation
Probase Data Technology Industries
Sensible Solution O' Hanlon Computer Systems
dBase II Ashton-Tate

FIGURE A-1. POPULAR DBMSs

A-3. REVIEW PROCEDURES

A thorough review of software should consist of three elements in the
following order: 1) literature search, 2) personal contact, and 3) field
testing. Through the literature search and personal contact, you should be

able to narrow the choices to a small number of likely programs.

There are two primary sources of written reviews and guidelines:

f Articles about DBMS concepts and evaluation in several computer
magazines such as "BYTE", "InfoWorld", "Popular Computing",
"Personal Computing" and "Interface Age", among others.

• Government publications such as: "Microcomputers in Transportation:
Selecting a Single User System "

,

"Data Base Management Systems .

Personal contacts should be made with the staffs of paratransit agencies,
university professors, and USDOT officials who have had direct experience with
specific DBMS products.

Based on these contacts and reviews, manufacturers can be contacted and asked
for a review of their product, using either the entire package, a "demo"

version or, in its absence, a complete set of specifications. Many companies
will send the entire package on a 30-day free trial offer. Demo packages
usually perform most system functions at minimal (under $5U) cost. You should
be extremely reluctant to select a product which is not available for hands-on
review. The software industry is in general characterized by manufacturer
claims unsubstantiated by field experience and program "bugs" which only

become apparent in the field.

A-4 BACKGROUND ON DBMS CONCEPTS

A DBMS can be defined as a set of computer programs that provide data
definition, input, storage, retrieval, sorting and manipulation in a useful

and efficient manner. In other words, it is a tool for managing an

information resource.

A-2

The key elements in a data base are the following:

§ A field is the simplest unit in the data base. One item of informa-
tion IS stored in each field (e.g., name of a client). Fields have

a defined length -- the number of bytes of information contained in

the field (e.g., a name field might contain 20 spaces, while a sex
field could only have 1). Fields also have a type, such as alpha-
numeric (combination of letters, numbers and symbols) and numeric
(only numbers).

• A record is a collection of fields related to each other (e.g.,
client name + address + city + state + zip).

• A file is a grouping of records with the same field structure (e.g.,
cl lent file with name, address, etc. of all the clients).

Thus, a data base is the collection of all the files that have a meaningful
relationship to each other.

Three different types of DBMSs exist in the microcomputer environment,
according to the levels of sophistication of the data base:

f A List Manager is the simplest DBMS. It is nothing more than a

"card" filer program (each "card" holds only one record) that up-
dates, sorts and retrieves the information stored in each "card"

separately. In summary, it is something like an electronic
"Rolodex"

.

• A File Management System is capable of working with only one file
(comprising several records) at a time. When data is modified in

one file, associated data in other files is not changed (i.e., the
files are NOT "related" to each other). Being menu driven, it is

easy to use, but still limited in capabilities. However, it has
certain advantages over a List Manager, such as: the speed of

access to the data, data manipulation capabilities using primary or

secondary keys (a key is a specially "marked" field used as the base
for sorting data), and powerful report generation capabilities.

t A relational DBMS can operate on two or more data files at the same
time^ Ihe fields in one file are related to the fields in other
files. When the data in one of these fields is changed, data in the
related fields changes automatically, thus allowing the simultaneous
update to numerous pieces of information. This implies the
elimination of data redundancy, since fields have to be created only
once.

A-5 CHARACTERISTICS OF A GOOD DBMS

A good DBMS should have the following characteristics:

• easy and accurate input of data

A-3

• data protection (e.g., user password to access the DBMS; fields
are read/write protected)

• data validation ("checking" for input of erroneous data)

• elimination of data redundancy

• quick search and easy update of the data

• report and form generation capabilities

• easy transfer of data to other programs and environments

• avail abil ity/manufacturer support

Unfortunately, only a few DBMSs offer all these characteristics, and they are
usually difficult to learn and use. There is a clear trade-off between the
"power" of a DBMS and its ease of use.

A-6 SELECTION CRITERIA

The following critera should be used in the selection of a DBMS:

• Ease of Use , as previously stated, is the single most important
characteri Stic in a DBMS, recognizing, however, the above mentioned
trade-off between "power" and ease of use. Along with the considerations
discussed in previous paragraphs, it is necessary to add that some DBMSs
are, in reality, designed to be used by a programmer as tools to create
finished applications programs. They are essentially code generators
that are meant to be used by the skillful user to create customized
programs with specific data requirements.

• DBMS's Functional Capabilities (the power of the DBMS) as measured by:

the characteristics (as mentioned in Section A-5) that it offers;
its "size" in terms of number of fields/record, number of

records/fi 1 e, number of files simultaneously open, etc.;

its type (relational or not);
data field types that it can handle.

• Integrati on is one of the "hottest" topics in the microcomputer software
field these days. Integrated software means software that provides a

high level of functionality and flexibility, passing information
effortlessly from one application program to the next, where user data
will be stored, shared and retrieved efficiently. The complete MIS would
integrate a DBMS, spreadsheet, word processor and graphics program, with
the DBMS acting as a starting point -- all current information being
entered into it.

Total integration as described above, however, is almost non-existent
today in available commercial microcomputer software. Only one package
of which we are aware ("Open Access") claims to integrate all these
programs. Open Access is just now becoming available in the market-

A-4

place. The other DBMS packages only provided a low level of integration,
consisting of the ability to read and/or write data files that can be

accessed by the other programs (spreadsheets, word processor).

• Transferabi 1 ity means that the software should be written for a

recognized industry-standard operating system (e.g., MS-DOS, CP/M,
UCSD-p), compatible with the one used by the spreadsheet and word
processing programs, and compatible between different versions of the
operating system (if possible).

• Cost - although a DBMS can satisfy the information needs of a paratransit
agency more effectively and efficiently than manual methods, the cost of
a DBMS program should not be prohibitive. Therefore, a cost ceiling for

software procurement must be imposed which is realistic (taking into

account the cost of the hardware and other software also needed). The
average cost of the packages discussed here is near $500, with a minimum
of $295 and a maximum of $695.

A-7 CHARACTERISTICS OF SPECIFIC DBMSs

The characteristics of the DBMSs mentioned at the outset are displayed in

Table A-1, showing for each the following information:

• Name and manufacturer.

0 Type: relational or file manager (not relational).

0 "Size" of the data base, expressed as number of:

- records/file (number of records in a single file);
- fields/record (number of "pieces" of information that a record can

handl e)

;

- characters/field (i.e., the maximum length of each field)

0 The maximum number of different files simultaneously open. This is

an important concept, because if only one file can be open at any
time, quite a bit of "shuffling" will be necessary to update,
retrieve or enter different records.

0 The different data field types that the data base can accept (some
accept special field formats such as Social Security number,
dollars, date, etc.).

0 The level of integration of the DBMS with other programs (spread-
sheet, word processor) as defined in the above paragraphs.

0 The ease of use is, to some extent, a subjective judgement. We have
tried to classify the different programs from a non-technical user's
perspective, assuming, however, that the user is willing to spend
more than a couple of hours studying the user's manual and

tutorial. In this column:

A-5

TABLE

A-1.

DBMSs

CHARACTERISTICS

LU LO Lf3 lO LO 0 LO 0 0 LO 00 03 <03 <03 <03 0 <03 LO LO CTt 0
-H CM to LO LO LO LO
ac V3- faO- V=)- 40-
Q-

^

-M OD +J +j (U +J 4U <U
UJ 1— <03 +-> r— 1— <03 r— <03

'-U oo 0 03 03 D 0 03 Q3 0 03
00 =3 u 0 ^ a 0 0 <J 0 0< >) >3 >3 >3 •f- CJ> >3—' 2 -r- 1- •f— <03
UJ Uu CO to to to <- C in + <1) 4- 4- c 4- 4- C0 fO (T3 4— fO (T3 E 4- 03 4- 4- 03

LU LU LU LU -I- _J LU 0 - 1
- •r- _l •P“ •

1- _lQ -

—

10 Q Q '

—

Q
z0 <u O) O) <u <U <U TO <D
1—

1

+j +-> +-> +3 <U +-> <11 +->
1— •r“ •r~ -r- •r“ JO -I- +->

< U U C. U </) £_ ro u
q; 3 3 3 3 TO 3 U 3 < < <C
'J3 fO <03
LU TO TO TO TO <U TO <1) TO Z Z Z
h- <T3 fO C- fO +J (Oz <11 <u O) <u Q. <1) C <1)

Od Od IZ 00 Q£ I-H

z0
TO< 1

— u
1— 0 0C LU < to 2 to to «c < <c toQ 1— O) {A <1) <u <u 00 z >- to >- >- z z z >- z

q; fO
Q- Q-

Q
00- oo- _j< 00 Q Q rt Q Z £_ Q Q

1
— LU A •N Q O) Q Q r\ < <1)< a. Z Z "JO z -C Z Z zQ >- 3 +J Z 3 +J

1— < < "O 0< < " 0 < c << < <c <
00 •Z LU CM E

LU _1 1—

1

^ 0 •r-» LO CM CO 0 CM
Q_ H-l f-H f-H0 Li. c

“i

• Q 0 0 0 0 Lf) 0 LO
q; _i uo CM 0 ro 00 '=:i' CM LO LO LOC LU CM Lf) Lf) r-H CM CM
ZC. i—< CM i-H Lf)0 Ll_ LO

Q
_l • 0 0 0 0 Lf) LO CM
LU 0 LO 0 Lf) LO CM LO CO CO
K-« (_lJ

Li- q;
CM CM f-H <0

0 0 Lf) 0 LO LO0 0 IJO C CO 0 CO CO c CO0 0 0 LO 0 LO LO 0 LO
• LU CM Lf) •- — LO CM LO LO LO0 _l 0 0 + cn •r- + LO CO LO LO LO . 1- LO

LU >—

1

0 CM (—
CC U- 1-H 0 •r“ •r~

-Q E
f-H

, ,
, , , ,

• • • <0 fO fO 05 fO 03 ro
u U u c c c: C c c C

LU 03 03 <03 0 0 0 0 0 0 0
a. 2; 2: •r— •p* *r“ •r* •r~ •r- •r*
>- K +-> 4J +-> 4-> M +j +j

CD O)^ <1) (0 03 fO fO 03 ro
r“ r— f—
•r- •r~ 0) <u 0) cu <13 (V d>

Li- U- U- cc Cd <3f ac cc: oc (Z

Qi
LU —

V

z
1— • >3 0

Od <u 00 +J <03 H-l

LU U <c M- 0 h-
oc >-H ro 2: 0 to H— 2) X—

V

ZD 00 3 E 0 _l O)
LU 1— M QQ 0 C d» in C 0 +J
s: 0 q; >4— Q OJ <D 0 .

—

2: 4U in JC in ro< < LU 0 u > > 0 E LU in LU a c
2: Ll_ CD 00 Q (T3 H—1 ‘r— ^ -P- CD >, 0 CO cu LU 0 HH 1

13 <C LU 2 +-> u Q LO <_) • c_ LU 1
— _1 ^ •—I cZ 2: fo 0 <U • fO LU 0 LU C H-l q:: 0 in CQ C 0< < JO Z C 2: 0 00 t_ _i <0 • 0 TO <C (O I

—1 ro 03 +J
s: 2: <0. < 0 • c <c 0 3 QQ Z Q. <2 C QQ +J in zc </) SZ> -tu • c CQ •!— 0 <21 LU • 3 0 0 03 z - ro to

QQ C Q 00 • 1—

1

•• 2: 3 s: Q. in 0 C_) QQ Q LU 0 QQ CQ '

—

< '

—

1 Qc:— — 0 '

—

0 in -

—

TO

u
•f“

c_
cu

3 0 1

—

c •- l_ 03

03 CO £- 03 0
j: x: Cl) <13 (— -r-

(O. Q. E M 1
— <0)

1— 03 03 0 0< < z Q CO —

1

II II II II II II

< 2: Z Q-fcO-—

I

=t

10
O)
CL

fO
-t->

(OQ

<U
CD
<0 £_
C o»

s: z5
+->

O) o
(— (O

T3 'O
<U E
+->

fO >>
U-Q
4-> -a
in o»

oo
UJ
h-o

A-6

- an "easy" program is one that is menu-driven and/or has "help"
screens (or lines), with clear documentation that is easy to read
and understand;

- a "somewhat difficult" to use program is one that does not provide
"help" screens, or is not menu-driven and has more or less obscure
documentation;

- a "difficult" to use program is a code-generator type of program
(a programming "language" by itself), is hard to learn and is

designed to be used by a programmer.

f The current price for each package.

A-7

%§iic fMi ^ M. 0^'mm

APPENDIX b

USING R:BASE ON FLOPPY DISKS

The key to using R:base on floppy disks is being able to estimate the size of
your data base. This process is explained in detail in Section 2.7 of the
R:base Manual. The main factors in the size of any data base are the
fol 1 owi ng :

• Number of columns occupied by each record
• Number of records in each relation

There are two other factors unique to Ribase. Assigning "keys" to attributes
for faster processing adds considerably to the size of the data base. If your
data base is small enough to contemplate using floppy disks, the advantages of
key fields are minimal. We recommend using no more than one.

R:base also requires temporary holding space for sort files. Once the sort is

completed, this space is returned, but you must have enough room to perform
the sort.

As you build a data base, you can determine its size through the directory
function of your operating system. Each R:base data base consists of three
files. In our example, they are labelled as follows:

• CARl.RBS
• CAR2.RBS
• CAR3.RBS

The first file contains the data base structure and is usually quite small.
The second file contains the data and directly relates to the amount of
information in your data base. The third file contains key fields. The size
of keys will depend on the size of attributes you designate as keys and the
amount of data you put in them. You can experiment with the key designation
and check its impact and size relative to the data file.

The most important decision you need to make is whether or not to use the
"reload" function. As your data base evolves and records and relations are
deleted, the space they occupied remains occupied unless you reload the entire
data base. To reload, however, you must have available on disk sufficient
space for the new, reloaded data base. This data base will equal the size of

your original data base minus whatever you deleted. You may decide it is not
worth holding space for a reload and just plan to use the entire disk without
reloading. If you reload without sufficient space, the entire data base will

be killed! Make a back-up copy!

To reload, enter "reload new data base name ". Be sure to reload to the "b:"

disk unless you have more storage space in the "a:" disk which contains the

R:base II diskette. If you do reload to the R:base diskette, you can later
use the copy function of your operating system to send the data base back to

the working diskette.

B-1

After reloading, use the delete command of your operating system to remove the
old data base and restore disk space. Then use the rename command to restore
the original data base name to the new data base.

The size of a given data base is dependent on the row length of each record
and on the number of records. The number of records can be easily estimated.
For example, the number of records in the master client file equals the number
of clients. The number of records in each of the vehicle schedule files used
in this Manual is based on the number of trips assigned to each file. In the
system which we set up, round-trips and one-way trips are each contained on a

single record. Based on ridership levels and operating procedures, the user
should be able to estimate the maximum number of records which will need to be
ma^intained on a given vehicle schedule file at any one time.

To estimate the length of a row, perform the following steps:

1. Add the length of all the attributes in each relation. For this purpose,
length is calculated by means of bytes. Attributes have the following
byte lengths:

0 Text: number of characters as assigned by user (minimum of 4 bytes)
0 Dollar: 8 bytes
0 Date: 4 bytes

0 Time: 4 bytes
0 Integer: 4 bytes
0 Real : 4 bytes

2. Add 6 bytes per row to the above total. Round odd lengths to an even
number.

3. Divide 1536 by the number of bytes in a row for each relation to find the
number of rows/block. Discard fractions.

4. Estimate the number of records in each relation.

5. Divide the number of records by the results of Step 3 for each relation
to find the number of blocks/relation (round up).

6. Multiply the total number of blocks by 1536 to find the number of bytes
in file 2 (b:car2.rbs) of your data base. Compare this amount to

available disk space.

R:base also creates temporary files for sorting which are deleted upon
completion of the sort. However, there must be sufficient room on disk to

perform the sort. To estimate the size of sort files, do the following:

(# of rows being sorted x (sum of length of attributes + 4)) x 2

B-2

APPENDIX C

CUSTOMIZING R:BASE

The new features incorporated in R:base (see Appendix F) make it easy to
customize the program for specific applications. This is particularly useful

when there are a series of commands to be executed repetitively. Operators
(such as dispatchers and clerks) who are unfamiliar with R:base commands will

be able to perform their particular applications by simply selecting an option
from a list of menu choices (previously set up using command files and prompt
menus). Thus, the operator does not have to know (or remember) all the

commands needed to perform a particular task with R:base. He/she needs only
to choose an option from a menu and type whatever the terminal asks for.

Although the new features added to R:base in version 1.1 make it relatively
easy to customize, developing customized applications requires a slightly
greater degree of data processing sophistication than simply using R:base
off-the-shelf. In particular, a rudimentary knowledge of programming in BASIC
is helpful in understanding the concepts of command loops, "if" clauses, and

other elements of programming logic. Of necessity, the explanation which
follows is slightly more technical than the body of the manual.

Almost every step or task in R:base can be conveniently customized. The only
exceptions are loading R:base and opening the data base at the beginning of a

session. The customization is based on the creation of R:base command files.
Every application discussed in the manual includes specific procedures which
are executed over and over. Each of these procedures is associated with a

given sequence of commands (e.g. selecting a record with specific
conditions). Instead of typing the same sequence each time that a given
procedure is executed, one can put the commands into an R:base command file
and execute the entire sequence by using only the "input filename" command.
Thus, the commands are then processed as if they were typed in at the

terminal. In other words, the command file is a collection (batch) of Rrbase
commands that are executed simply by typing "input filename" inside Ribase
("filename" is the name of the command file).

The utilities that Ribase provides to facilitate the creation, editing,
listing and running of command files are the Ribase commands "rbedit" (a text

editor), "type filename" (type and contents of the file at the terminal), and
"input filename" (run the command file). An additional feature of command
files is that if you put a as the first and only character on a line in

the file, Ribase will print the message "PRESS ANY KEY TO CONTINUE" at the
terminal when that line is encountered during execution of the command file.
This feature could be used to pause and step through a series of commands.
Command files may also be nested up to five levels deep. This means that you
can use a maximum of six command files at any one time (i.e., a maximum of six

files can be referenced to each other inside a command file).

The second keystone for the building of a customized application is the use of
a new Ribase feature, local variables (see Appendix F). These are temporary
variables that exist within Ribase but are not part of any data base. Each
time Ribase is loaded, there will be no local variables (i.e., they are "lost"

when exiting Ribase).

C-1

Local variables are created by assigning them a value with "set variable",
"fillin'' or "compute" commands, (These commands are explained in Appendix F.)

Once created, local variables remain active until exiting R:base. Their
values can be reset or recomputed at any time by using the same three
commands. The command "show variable" will display the names and values of
all the current local variables created since the beginning of the session.

Once created, local variables may be used in one of two ways. You can use the
value of a local variable within a command by preceding the variable name with
a period (.). Secondly, you may use local variables without the period in the
conditions of the "if" and "while" commands. (The "if" and "while" commands
are used in a command file to conditionally process a series of commands.)
These uses (and commands) will be clarified in the following example.

The example that follows demonstrates R:base's customizing capabilities, using
the above mentioned commands, local variables and command files. We have to

point out, however, that this is only an example of how to customize a

specific application. User should build their own customized appl ication(s)

,

suited to meet their specific needs. Nevertheless, this is a useful example
of how to build a customized application in which several options can be

chosen by the operator, and, at the same time, providing useful insights into
the customization process.

C-1. STEP 1 - DEFINE THE APPLICATION TO CUSTOMIZE

The first step should always be to analyze and define the application that you
want to customize. In this case, our hypothetical application would be to

customize the process of checking the eligibility and updating (if necessary)
the information provided by a potential customer who requests service from the

paratransit agency. This process is described in Section 2.3.5 of the Manual.

Assume that the operator will use R:base interactively to:

• check if the call that he/she is receiving corresponds to a customer
who is listed in the master client file and is eligible for the

service requested (e.g., a trip);

• if the client is eligible for the service, add the new trip to the
trip file; and,

• update the customer's data, such as change of address, passenger
classification. Title XX units remaining, etc.

Also assume that we decide to use a "menu" format to perform each of the above
steps, where the operator can choose one of the options to be displayed on the

screen. The menu approach greatly reduces the potential for operator error
since instead of creating commands from memory as is standard R:base

procedure, the operator will respond to computer generated prompts with
computer-defined answers. This can also accelerate the process making it more

practical to perform these functions while on-line with a customer (hence the

term interactive processing).

C-2

C-2. STEP 2 - CREATE THE COMMAND FILES AND LOCAL VARIABLES

This step constitutes the "core" of the customization process. Figure C-11 at

the end of this Appendix summarizes the steps created in this section.

The first command file to be created is the file called "choicesl.cmd". It's
displayed in Figure C-1. As can be seen, this file is nothing more than a

list of R:base commands such as "newpage", "type", "fillin'', etc. The first
command, "newpage", is used to clear the screen. Immediately after the screen
has been cleared, the command "type a:menul.dat" displays the contents of the
file called "menul.dat" on the screen. This file is a text file (not a

command one) that contains the text of the menu to be displayed on the screen
(see Figure C-2).

Once the file "menul.dat" has been displayed on the screen, the next command
line is executed. This is the "fillin'' command, used to define the local

variable called "msgl" and set its value to the one typed by the operator when
he/she makes a choice from the menu displayed (see Appendix F for an

explanation of this command).

As shown in Figure C-2, four options are presented to the operator (either
"1", »

2 »
^

K3M
Qp "Q"), jhe following command lines in Figure C-1 are a series

of logical if-endif loops to "branch" to other command files to perform the
operation(s) chosen accordingly. For instance, if the operator chooses "1",

then the value of "msgl" is set to 1, so the command file called "check.cmd"
is input and executed (this file contains the commands to perform the checking
of the customer data). The operator could have chosen "Q" instead, executing
the "newpage" and "quit" commands and leaving the customized application.
("2" and "3" should be chosen after having performed step "1", as explained
below.)

Assuming that the operator chooses option number 1, the command file
"check.cmd" (see Figure C-3) will be executed. The first two commands on this

file are used to set the null value to "N/A" and to clear the screen with a

"newpage" command. Then, a new local variable, "name", is defined, and its

value set to the last name of the customer calling, by means of the "fillin''

command. The message "PLEASE TYPE THE LAST NAME OF THE CUSTOMER:" is

displayed on the screen and the program waits for the operator to type that
last name, thus setting the value of "name" accordingly. After this, a

"newpage" command is executed to clear the screen again.

The following command instructs the program to display the customer's data on
the screen, using the "select" command, in order for the operator to verify

that the customer is eligible for the trip. Notice that this is very easy to

perform with the condition imposed: "where lastname = .name" (this is an

example of using local variables in a command line). R:base "knows" that the

value of "name" is set to the last name of the customer, so the program
searches all the records in the master client file for one with the "lastname"
field equal to the value of "name". After displaying the customer's data on

the screen, the "output" and "unload" commands are used to write an ascii data
file containing the customer's data. The purpose of this is to "store" this

useful information for later manipulation and to add this data to the realtime
trip file without typing the customer's data again.

C-3

newpage
type a : menu 1 . dat;

fill in rnsgl using "PLEASE CHOOSE ONE OF THE ABOVE (1, £, 3 or Q) :
" +

at 16 8
if msgl eq 1 then
input a: check.cmd
end i f

if msgl eq £ then
input a : choices£. cmd
end i f
if msgl eq 3 then
input a : update:, cmd
end i f
if rnsgl eq Q then
newpage
quit
end i f
quit
neMpage

FIGURE C-1. COMMAND FILE "CH0ICES1.CMD"

PLEASE TYPE ONE OF THE FOLLOWING NUMBERS (OR LETTER) TO;

1 Check if the customer is already listed in the master client file and
then add the new trip to the trip file;

Update the master client file and related files using a menu;
(this sould be performed AFTER step 1)

3 - Update the master client file and related files using a screen form;
(to be performed AFTER step 1)

Q - Quit this menu.

FIGURE C-2. TEXT FILE "MENU1.DAT"

C-4

set null N/Pl

newpage
fill in name using "PLEftSE TYPE THE LOST NOME OF THE CUSTOMER^ " +

at 5 10
newpage
select client id lastnarne rned# xx# xxunits terrndate terrnwhy +

from rnsclient where lastnarne = .name
output a: trip.dat
unload data for rnsclient as ascii using client id lastnarne frstnarne
address city paxclass specneed where lastnarne = . name
output terminal
fill in yesno using "DO YOU WftNT TO CONTINUE PND PDD THIS NEW TRIP
at 10 10
if yesno eq Y then
input asadd.crnd
end i f
input a: choices 1 . crnd

quit

FIGURE C-3. COMMAND FILE “CHECK.CMD"

C-5

(Y/N)? +

The "fillin'' command is used again to set the new local variable "yes/no" to
the value typed by the operator as an answer to the question displayed: DO
YOU WANT TO CONTINUE AND ADD THIS NEW TRIP (Y/N)?. If the operator, upon
examination of the customer's data, decides that the customer is not eligible
for the trip, the answer would be "N". The command "input a ichoicesl.cmd"
will be executed, displaying again the file "menul.dat", without adding that
trip to the realtime trip file. Otherwise (answer "Y"), the command "input
aiadd.cmd" will be performed and the file "add.cmd" executed.

The command file "add.cmd" (see Figure C-4) is used to add the customer's data
to the realtime trip file. It begins clearing the screen ("newpage") and
displaying the contents of the textfile "addtxt.dat" with the "type
a raddtxt .dat" command. This file (see Figure C-5) contains the message to be
displayed on the screen to inform the operator what to do next: to use the
form to be displayed to fill the remaining data of the customer's trip
characteristics (time, destination, etc.) to the realtime trip file. While
this message is displayed, the customer's data previously stored in the data
file "trip.dat" is being loaded to the "realtime" trip file by means of the
"load" command, thus automatically filling in those fields without the
operator having to retype them.

Thus,, data common to both the master client and vehicle schedule files (name,
address, classification, etc.) are loaded automatically. As you recall, in

the example in the text, each attribute had to be loaded by the operator
individually.

The "set rules off" and "set messages off" commands are necessary in this
example to override the error message which we had created in the
establishment of the data base. As you recall, we had created a rule not to
allow a trip to be scheduled before 7:00 a.m. When the client file data is

loaded automatically, no trip times have yet been established. R:base reads
trip time as having a "null" value which it interprets as preceding 7:00 a.m.
Thus, unless rules are turned off, our error message will be triggered. This
reaction frankly surprised us. Since we had not created a rule requiring a

pick-up time, we had assumed that R:base would simply ignore the null value.
After the loading has been completed, both rules and error messages are again
"turned on".

The " character is used to display on the screen the message: PRESS ANY KEY
TO CONTINUE. The screen then clears and the "rtsched" form (set up with the
"realtime" relation) appears in the screen by means of the "edit using
rtsched" command, with the customer's data filled in because of the condition
"where lastname - .name" (and because of the previous "load" command). The
operator then "browses" through the form filling in the trip data and editing,
if necessary, the other fields in the form. Note that this can be done
interactively while communicating with the customer on the phone at the same

time. By pressing the "C" option, the trip data is added to the realtime trip
file. Then the command "input a :choicesl .cmd" brings up the file "menul.dat"
(i.e., our first menu) to the screen again.

Options "2" and "3" of the original menu provide the operator with the ability
to update the customer's data in the master client file due to a change of

address, classification. Title XX units, etc. This is accomplished with one

C-6

newpage
type a : addt xt . dat
set rules off
set messages off
load v'ealtinie from a:trip.dat as ascii using client id lastnarne fv'stname +
address city paxclass specneed
set messages on
set rules on
*\4

set null
edit using rtsched where lastnarne - .name
input a : Choi ces 1 . cmd

FIGURE C-4. COMMAND FILE "ADD. CMD"

PLEFISE USE THE FOLLOWING FORM

TO FILL IN THE BLFINK FIELDS

AND THEN PRESS "C" TO PDD THE NEW TRIP

TO THE REOL TIME TRIP FILE

FIGURE C-5. TEXT FILE "ADDTXT.DAT"

C-7

of these two choices. Both are presented in this example to demonstrate the
various possibilities existing in the setup of a customized application.
Option "2" uses a "menu approach" in which the operator chooses the field that
has to be updated. Option "3" uses a form to display all the customer's data
and allowing the operator to "browse" through it, editing the fields to be

changed accordingly. Note that these options should be performed after option
"1" since both make use of the local variable "name" set up in option "1".

Thus, if the operator chooses "2" or "3" as the first option, the local
variable "name" does not exist and the commands that use it have no effect.
The advantage of each approach is described below.

If the operator chooses option "2" then the command file "choices2.cmd" (see
Figure C-6) is executed (by means of the command "input a :choices2.cmd" in

the "choicesl.cmd" command file). After clearing the screen and setting the
number of lines per screen to 24 (in order to display the following menu), the
contents of the text file "menu2.dat" are displayed on the screen (see Figure
C-7). The operator then chooses one of the options and sets the value of the
new local variable "msg2" with the "fillin msg2 using..." command. Then the
command file "update.cmd" is input and executed.

The command file "update.cmd" (see Figure C-8) is used to update (change) the
value of the field chosen by the operator. It consists of several if-endif
logical loops that are performed depending on the value of the local variable
"msg2". For example, if the operator chooses to change the address of the
customer, then option "A" of the menu is chosen, thus setting "msg2" equal to
A. Then the first logical if-endif loop is performed. The screen is cleared
and a new local variable, "field", is defined using the command "fillin field
using "PLEASE ENTER THE NEW ADDRESS:"", its value equal to the string typed in

by the operator as the new address of the customer. Then the field "address"
is changed over al 1 rel ations containing it by means of the command "change
address to .field where lastname = .name". Notice the use of the previously
set (and still active) local variable "name". Note also the power of the

relational data base in permitting simultaneous update of a field across
several files.

The updating of the other fields is identical, setting first the value of
"field" to the string typed by the operator and then changing the value of the

particular field to the "field" value over all relations where the condition
"lastname = .name" holds (i.e., where the data corresponds to the customer's
data). After changing the field(s), the menu ("menu2.dat") will again be

displayed by means of the command "input a :choices2.cmd" in the "update.cmd"
command file. The operator can then change other fields or quit this process
by choosing "Q", thus leaving the customized application.

Our example ends with the last option ("3") that can be chosen from the first
menu ("menul.dat"). As said before, this option uses a form to change
(update) the customer's master file data. When the operator chooses "3" the

command file "updat2.cmd" is input (see Figure C-9) and executed (by means of
the command "input a :updat2.cmd" in the "choicesl.cmd" command file). After
the screen is cleared, the text file "message.dat" is displayed (see Figure

C-10) on the screen. Then, the "client" form (set up with the master client
file "msclient") is used to edit the customer's data using the command "edit

using client where lastname = .name".

C-8

) :

I

'i

I

1

I

nevgpage
I set 1 i nes £4
! type a : menu£. dat
!
fillin msgS using "PLEftSE CHOOSE ONE OF THE ABOVE < A, T, Z, P, C, N, X, D, R or

I

at £4 a

I

input a: update, crnd

" +

FIGURE C-6. COMMAND'FILE "CH0ICES2.CMD"

PLEASE TYPE ONE OF THE LETTERS TO UPDATE THE FOLLOW
FIELD (S) IN THE MASTER CLIENT FILE AND RELATED FILE

A — Change the customer’s address;

T - Change the customer’s city/town of residence;

Z “ Change the customer’s zip code;

P - Change the customer’s phorie number;

C — Change the customer’s passenger ciassi f icat ion

;

N - Change the customer’ s special needs informat ion;

X — Change the customer’s Title XX units;

D - Change the customer’s termination date;

R — Change the customer’s termination reason;

Q - To quit this menu.

FIGURE C-7. TEXT FILE "MENU2.DAT"

C-9

cn

newpage
if rnsg£ eq Pi then
f i 1 i i n
change
end i f

if rnsgS

fill in
change
end i f

if msg£
f i 1 1 i n
change
end i f
if rnsg£

f i 1 1 i n
change
end i f

if rnsg£
fi 11 in
change
end i f
if rnsg£

f i 1 1 in
change
end i f
if rnsg£

fi 11 in
change
end i f
if msg£
f i 11 in
change
end i f
if rnsg£

f i 1 1 in
change
end i f
if rnsg£

field using "PLEPISE ENTER THE NEW PiDDRESS; " at 5 iU
address to .field where last name = . name

: eq T then
field using "PLEPtSE ENTER THE NEW CITY/TOWN; " at 5 10
city to .field where lastname = .name

: eq Z then
field using "PLEPiSE ENTER THE NEW ZIP: " at 5 10
2 ip to .field where lastname = .name

; eq P then
field using "PLEPISE ENTER THE NEW PHONE NUMBER: " at 5 10
phone to .field where lastname = .name

: eq C then
field using "PLEPSE ENTER THE NEW PASSENGER CLASS: " at 5 10
paxclass to . field where lastname = . name

: eq N then
field using "PLEASE ENTER THE NEW SPECIAL NEEDS: " at 5 10
specneed to .field where lastname = . name

! eq X then
field using "PLEASE ENTER THE NEW TITLE XX UNITS: " at 5 10
XX units to .field where lastname = .name

eq D then
field using "PLEASE ENTER THE NEW TERMINATION DATE: " at 5 10
termdate to .field where lastname = . name

eq R then
field using "Pi_EASE ENTER THE NEW TERMINATION REASON; " at 5
termwhy to .field where lastname = . name

eq Q then

10

quit
end if
input a; choices£. cmd

FIGURE C-8. COMMAND FILE "UPDATE.CMD"

C-10

neMpage
type a : message, da

t

edit using client
set variable strt
set variable town
set variable post
set variable bell
set variable class
set variable
set variable
set variable
set vav'iable

where last name = . name
to address in msclient where lastname = .name
to city in msclient where lastname = .name
to zip in msclient where lastname = .name
to phone in msclient where lastname = .name
to paxclass in msclient where lastname = .name

. name
name

e lastname = .name
lastname -- .name

change
change
change
change
change
change
change
change
change
quit

need to specneed in msclient where lastname =

unit to xxunits in msclient where lastname =

tdate to termdate in msclient whet
twhy to termwhy in msclient where

address to . strt where lastname = . name
city to . town where lastname = . name
zip to .post where lastname = .name
phone to .bell where lastname = .name
paxclass to .class where lastname = .name
specneed to . need where lastname = . name
xxunits to .unit where lastname = .name

.tdate where lastname = .name
twhy where lastname = .name

termdate to
termwhy to

FIGURE C-9. COMMAND FILE "UPDAT2.CMD"

PLEftSE USE THE FOLLOWING FORM

TO CHfiNGE (EDIT) PNY OF THE

FIELDS OF THE MASTER CLIENT FILE

AND RELATED FILES

FIGURE C-10. TEXT FILE "MESSAGE.DAT"

C-11

The operator "browses" through the form, editing all the fields to be
updated. By pressing the "C" option, the new data will be written to the
master client file, "msclient". In this way, only the "msclient" relation
will be updated. The other relations containing all or some of the same
fields that have been updated will be unchanged. To effectively change the
values of the new customer's data in all the other relations the following
groups of commands are used in the "updat2.cmd" command file. First, the new
local variables "strt", "town", "post", etc., are set equal to the new values
(just updated with the "client" form) of the fields "address", "city", "zip",

etc., in the "msclient" relation where "lastname = .name" (i.e., for the
customer's data). These new local variables are then used to change the
values of the "address", "city", "zip", etc., fields in all the other
relations by means of the commands "change address to .strt where lastname =

.name", etc. Thus, simply by editing the form displayed on the screen for the
master client file, all the fields changed are updated over all the relations
containing those fields for the specific customer that is calling. Note,
again, that this can be done interactively while the operator is communicating
with the customer.

The advantage of the menu approach (Option 2) is that the operator can quickly
update whichever field of data needs updating. It is most efficient for

updating single pieces of data because it eliminates the need to "browse"
through the entire "client" form to find the field which requires updating.
It also performs a true relational operation since it updates the field in all

relations in which it is contained. As discussed in the text, most of the

time this is a desirable feature.

The form approach (Option 3) is probably faster for updating several data
fields simultaneously. Instead of returning to the menu to call up each field
individually as in Option 2, the entire form is displayed for the operator,
who can browse through and selectively update. Since each form in R:base is

associated with ONE AND ONLY ONE relation (see Section 2. 2. 6.1), using this
approach will not normally result in a relational operation. The data will

only be changed in the one relation associated with the form. It is possible
to achieve a relational outcome with further manipulation as described above.

There may be occasions, however, where you will not want to update a field
across all relations. For example, suppose you bi 1 1 towns on the basis of

trips by residents. If a client moves to a new town after having taken

several trips from his/her old address earlier in the month, you will want to
.

bill those trips to the original town of residence. Therefore, while you will

want to update the master client file, you will not want to update the master
vehicle schedule file which contains all completed trips for the month.

C-3 STEP 3 - REVIEW AND TEST

The final step in the customization process is to review the command and text
files that have been created by using the "rbedit" text editor to correct any

errors in the commands or text. After that, test the procedure to be sure

that it meets your requi rements. To do this, execute the command files by

using the "input" command. To see the processing of these command files for

C-12

test purposes, it is useful to use the "set echo on" command. All commands in

the file will be executed in sequence and then control returned to the
terminal. If the test does not show the results expected, use the "rbedit"

text editor to analyze and correct any errors in the commands.

C-4 SUMMARY

As a summary of this customization example, the following flowchart (see
Figure C-11) shows all the steps to be performed for this particular
application, i.e., to add a new trip to the real time trip file and update the
customer's data interactively.

C-13

(see next pages)

FIGURE C-11. SUMMARY OF CUSTOMIZING EXAMPLE

C-14

FIGURE C-11. SUMMARY OF CUSTOMIZING EXAMPLE (Continued)

C-15

FIGURE C-11. SUMMARY OF CUSTOMIZING EXAMPLE (Concluded)

C-16

APPENDIX D

SCREEN FORMS

This Appendix contains all screen forms used to build the case study data
base, CAR, which forms the basis of this manual. You can utilize these forms
to replicate all of the functions performed in this manual. The following
forms are provided:

1. Relations

t msclient (master client file)

§ prsched (prescheduled trip file)

• realtime (dial-a-ride trip file)

t vsched (union of prsched and realtime)
• vehops (vehicle operations file)
• vmaster (master vehicle file)

2. Rules

3. Forms

• client (msclient relation)
• schedule (prsched)
• rtsched (realtime)
• operate (vehops)

4. Reports

• vehstats (vehops)
• trips (vsched)
t cl file (msclient)
• bill (vsched)
• citybill (vsched)
• medbill (vsched)
• vehsched (vsched)

D-1

Re 1 at i on : rnsc 1 i ent
Read Password : YES
Modify Password: YES

Pttr'ibutes
Name Type Length
1 cl ient id TEXT 4 characters
£ last name TEXT 15 characters
3 frst name TEXT 10 characters
4 address TEXT 15 charact ers
5 city TEXT 10 chav'acters
6 zip TEXT 5 characters
7 phone TEXT 8 charact ers
8 paxclass TEXT characters
9 sex TEXT 1 characters
10 brt hdat

e

DPTE 1 value (s)

1

1

specneed TEXT 10 charact ers
1£ med# TEXT G characters
13 XX# TEXT 6 characters
14 XX units TEXT £ charact ers
15 termdate DPTE 1 va 1 ue < s

)

16 termwhy TEXT 15 characters

flttri butes
Name Type Length

17 editdate DATE 1 value <s)

Current number of rows: 141

FIGURE D-1. MSCLIENT RELATION

Key
yes

Key

D-3

Relation: prsched
Read Password : YES
Modify Password : YES

attributes
Name Type Length Key
1 tr i pdate DATE 1 value (s)

£ veh# TEXT £ characters
3 cl ient id TEXT 4 characters yes
4 last name TEXT 15 characters
5 frst name TEXT 10 characters
6 address TEXT 15 characters
7 city TEXT 10 characte?rs
a paxclass TEXT 3 character's
9 specneed TEXT 10 characters
10 put ime INTEGER 1 value <s)

1

1

dest inat TEXT 15 characters
12 rt TEXT 1 characters
13 r1 1 i me INTEGER 1 value(s)
14 trip# INTEGER 1 value (s)

15 tr i ppurp TEXT 3 characters
la paycode

At t r

TEXT

'i but es

4 characters

Name Type Length Key
17 ed i tdate DATE 1 value (s)

lurrent number of rows 6£

FIGURE D-2. PRSCHED RELATION

D-4

Relations realtime
Read Password s YES
Modify Passwords YES

Pttr'i butes
Name Type Length Key
1 tr i pdate DOTE 1 va 1 ue (s

)

2 veh# TEXT O charact ers
3 c 1 i ent i

d

TEXT 4 characters yes
4 last name TEXT 15 charact ers
5 frstname TEXT 10 charact ers
& address TEXT 15 charact ers
7 city TEXT 10 characters
a paxclass TEXT 3 characters
9 specneed TEXT 10 character's
10 put ime INTEGER 1 va 1 ue (s

)

11 dest inat TEXT 15 charact ers
IE rt TEXT 1 char'act er’s

13 rtt ime INTEGER 1 va 1 ue (s

)

14 trip# INTEGER 1 value <s)

15 tr i ppurp TEXT 3 char'acters
16 paycode TEXT 4 character's

flttr‘ibutes
Name Type Length Key

17 ed itdate DPTE 1 va 1 ue (s

)

Current number of rowss 38

FIGURE D-3. REALTIME RELATION

D-5

Relation; vsched
Read Password : YES
Modify Password: YES

#
Pttr

Name
* i butes
Type Length

1 t r i pdate DPTE 1 val ue (s)

£ veh# TEXT CL character's
3 cl ient id TEXT 4 characters
4 last name TEXT 15 charact ers
5 frst name TEXT 10 chav'acters
6 put ime INTEGER 1 va 1 ue (s

)

7 address TEXT 15 charact ers
8 city TEXT 10 characters
S dest inat TEXT 15 characters
10 trip# INTEGER 1 value (s>

11 rt TEXT 1 characters
1 c! rtt ime INTEGER 1 value <s)

13 paxclass TEXT 3 charact ers
14 t r i ppurp TEXT 3 charact ers
15 paycode TEXT 4 charact ers
16 specneed TEXT 10 characters

#
Ptt V

Name
'i butes
Type Length

17 ed i tdate DPTE 1 value (s)

18 med# TEXT 6 charact ers
19 XX# TEXT 6 characters

Current number of v'ows: S53

FIGURE D-4. VSCHED RELATION

Key

Key

D-6

Relation: vehops
Read Password : NO
Modify Password: YES

Pttr ibutes
Name Type Length
1 veh# TEXT 2 charact ers
2 opsdate DPTE 1 va 1 ue (s

)

3 dr i ver# TEXT 2 characters
4 endmi le INTEGER 1 value (s)

5 st m i 1 e INTEGER 1 val ue <s)

6 opsmi le REPL 1 value (s)

7 endhour INTEGER 1 value (s)

6 sthour INTEGER 1 va 1 ue (s

)

9 opshour REPL 1 va 1 ue < s

)

10 fuelqty REPL 1 val ue (s)
11 fuel cost REPL 1 value (s)

12 mpg REPL 1 val ue (s)

13 oi Iqty INTEGER 1 va 1 ue (s

)

14 oi Icost REPL 1 val ue (s)

15 repair TEXT 15 characters
16 repcost REPL 1 val ue <s)

Pttr‘ibutes
Name Type Length

17 ed it date DPTE 1 va 1 ue < s

)

Key

Key

Current number of rows: 25

FIGURE D-5. VEHOPS RELATION

D-7

Relation: vrnaster
Read Password : NO
Mod i fy Password : YES

ftt t r i bates
Name Type Length
1 veh# TEXT C. charact ers
a veh id TEXT 10 charact ers

lie# TEXT 6 charact ers
4 yrrnf g TEXT 4 charact ers
5 make TEXT 6 characters
6 model TEXT 6 characters
7 engsz TEXT 6 characters
a title TEXT 10 characters
9 1 ien TEXT 10 charact ers
10 purdat

e

DATE 1 value (s>

1

1

radio TEXT 1 characters
IE access TEXT 1 charact ers
13 #wchair INTEGER 1 value (s)

14 cap INTEGER 1 value (s)

15 GVW TEXT 4 characters
16 mi purch TEXT 5 charact ers

Attributes
Name Type Length

17 nowrni les INTEGER 1 va 1 ue (s

)

18 comment TEXT 15 charact ev's

19 ed i tdat

e

DATE 1 val ue (s)

Current number of rows: 5

FIGURE D-6. VMASTER RELATION

Key

Key

0-8

D-2. RULES

D-9

RULE checking = ON
RULE 1 zip ge 0200

and zip le 0S999
Message: Zip code is incorrect

RULE S clientid IN msclient nea client id IN msclient
Message : Cl ient ID is a duplicate

RULE 3 paxclass ex is
Message:Missing passenger classification

RULE 6 put i me ge 0700
Message: Trip time is too early!

is i ncorrect

RULE 7 rt eq y
or rt eq n

Message : Round trip icode
RULE 8 paxclass eq e

or paxclass eq eh
or paxclass eq h

or paxclass eq weh
or paxclass eq

Message : Passenger code
RULE 9 trippurp eq he

or trippurp eq nu
or trippurp eq mow
or t r i ppurp eq se
or tr i ppurp eq ft

or trippurp eq gt
or t r i ppurp eq adc
or tr i ppurp eq dl

is incorrect

Message: Trip code is incorrect
RULE 10 endhour IN vehops

Message: End hours must be
RULE 11 endmile IN vehops

Message: End miles must be
RULE 12 endmile IN vehops

Message: End miles must be
RULE 13 endhour IN vehops

Message: End hours must be

gta sthour IN vehops
greater than start hou
gta stmile IN vehops
greater than start mil
gta stmile IN vehops
greater than start mil
gta sthour IN vehops
greater than start hou

FIGURE D-7. RULES

D-10

D-3. FORMS

D-11

Client ID S E

Last Name S E First Name S E
Address S
Telephone S E

E City S E <

Passenger Class S E Sex E Birthdate S E
Special Needs S E

Nedicald # S E Title XX # S E Title XX units
Termination Date S E Reason S E

Edit Date S E

FIGURE D-8. CLIENT FORM

Trip Date S Vehicle # SE

Client ID S E
Address S
Passenger Class S E

Last Name S 1

E City S
Special Needs S

First Name

Pick-Up Time S
Round Trip? E
Trip # S

Destination S
Return Time S

Trip Purpose S E Payment

Edit Date

FIGURE D-9. SCHEDULE FORM

Trip Date S E Vehicle # SE

Client ID S E
Address S
Passenger Class

Last

S E

Name S
E City S

Special Needs

E

S

First Name S
E

E

Pick-Up Time S E
Round Trip? E
Trip # S E

Destination S
Return Time S

Trip Purpose S E Payment S E

Edit Date S E

E
E

E

FIGURE D-10. RTSCHED FORM

Vehicle # SE Ops Date S E Driver # SE

End Mile S
End Hour S

E Start Mile S
E Start Hour S

E Ops Miles S
E Ops Hours S

Fuel Used S
Oil Used S

Repair S

Edit Date S

E Coat S
E Cost S

E

E

E MPG S
E

Cost S E

E

FIGURE 0-11. OPERATE FORM

D-13

m
m

VEHICLE STATISTICSH

H

H

H

D

F

F

F

F

F

F

F

F

F

F

F

F

F

Viht Trip Datt Hours Hilts Fual

SE3 ESESESE

Total

I

Averagt HPBt

Hiles/Tripi

Trips/Hi la:

Trips/Hotri S

S E S E

S E

S E

Cost HP6 Oil

S E S E E

S E S E

S E

Cost

S E

FIGURE D-12. VEHSTATS REPORT

Rtpair Cost

S E S E

S E

H

H

H

H

H

0

F

F

RIDERSHIP BY CLIENT

IB Last Naaa First Nim Addrtss City Class Purposa Pay Trip Data Trip# Edit Data

S E S ES ESE SESES E

TOTRL TRIPS! S E

FIGURE D-13. TRIPS REPORT

D-15

MASTER CLIENT FILEH

H

H

H

H

H

H

H Last Nue
H

D S

First Naie ID

E S E S E

Address

S

c

1

a

s

City s SpecNeed Hedt XXI

ES ESES ES ES

u

A

i

t

s Teni Date Ten Uhy? EditDate

E SE S E S ES E

FIGURE D-14. CLFILE REPORT

H
H
H
H
H
H
H
H
D
F
F
F
F
F
F
F
F
F
F
F
F

CLIENT BILL
Month : May

Nana: S
Addrasa: S

Trip Data

S E

TOTAL TRIPS: S

TOTAL COST: S

E S E ID: S
E City: S

Destination

S

E

E

Purpose

S E

E
E

Trip#

E

Paycoda

S E

Purpose Coda: hc-health care; nu»slta nutrition; mow«naals on wheels;
se^speclal education; ft^field trips; gt*group trips;
adc^adult day care; dl=dialysls

Trip# equals the number of trips taken on a given day. If you rode the
bus both ways, trip# will equal "2". If you were acconpanied by an
escort, the escort's trips will also be counted.

FIGURE D-15. BILL REPORT

D-16

DestinationID Last Nail

CITY flSSESSMEHT

City: S E

Month: May

First Maw Mdress Tripdate Trip# Class Purpose Pay

S E S E S E S E S E S EE SE SE S E

TOTAL TRIPS: S E

TOTAL COST: S E

Purpose Code: he * health care; nu > nutrition site; now > eeals on h

ft = field trips; gt ^ group trips; adc » adult day car

Passenger Code: e - elderly; h » handicapped; eh s elderly handicappe

neh - Hheelchair elderly handicapped.

FIGURE D-16. CITYBILL REPORT

MEDICAID INVOICE
Month: May

Mad# Last Naas Firat Mass Trip Date Destination Trip#

S E S ES E S E S E E

TOTAL TRIPS: S E

cost: S E

FIGURE D-17. MEDBILL REPORT

VEHICL£ SCHEDULE

Vthicle f: SE

Date: S E

First Nw Address City Destination RT Tiw Class Purpose Special IMs

S E S ES ES ESESESES E

FIGURE D-18. VEHSCHED REPORT

D-5. COMPLETE MASTER CLIENT FILE

D-19

’tflSTtR CLIENT FILE

ii

i r,

a 1

5 t

Last Name First Name ID Address City s SoecNeed Med# XX# s Term Date Term Why? EditDate

Abbott Catherine 9702 Bridge Yarraouth e no phone 05/31/79 moved 05/31/79

Allen Helen «146 50 Lawtrier Centervill eh 628982 05/06/79

Ai lenson Herbert 0154 55 Rustown Cotuit weh 251753 30 09/30/79 05/14/79

Aries Rose 0077 15 Fr ingewcod Dennis e medicatio 05/03/79

Areas Marie 0071 12 Sna< Dennis e 05/16/79

Auld Grace 0031 27 Teal ford Dennis eh 019952 275743 22 08/31/79 05/15/79

Auld iNellie 0149 108 San Marcus Falmouth eh 043904 956433 34 09/30/79 35/11/79

Aval Ion Kathleen mu 1 Vickie Dennis e structure 05/17/79

Baker John 0001 65 Bass Dennis e 05/01/79

Barrett Robert 0129 66 Kenwood Falmouth e 293173 05/11/79

Battis Edith 0155 481 Oates Hyannls wen 936152 05/15/79

Bensten Ellen 0090 4 Beachway Hyannis eh structure 05/12/79

Beman Helen 0006 23 Sheryl Yarmouth e riedicatio 06/11/79

Biden Manuel 0150 29 Coronation Faliiiouth eh 05/12/7-9

Boggs Vickie 0122 13 Dyer Pccasset eh 470145 05/17/79

Boisvert Mildred 0056 3 Alford Dennis e 05/09/79

Boren Hilda 0148 10 Downing Falmouth e 05/31/79 overdue bill 05/31/79

Boyd Thomas 0160 55 Aster Sandwich eh 05/19/79

Bradley Ruth 0041 5 Ryan Yarmouth eh 05/23/79

Buckley Marguerite 0091 108 Syracuse Falmouth e escort 05/13/ /9

Buckner Marion 0042 196 Sandra Yarmouth h 05/24/79

Buckner Eliza 0021 109 Larice Hyannis eh 017220 111341 12 05/09/75

Buisoers Blariche 0143 120 Ocean Ave Falmouth eh 022116 '05/05/79

Busheuff Mary 0157 4 Point East Bourne en aedicatio 920527 05/17/79

Cabrera Florence 0162 73 Larry Bourne weh 695160 05/21/79

Callahan Arthur 0049 608 Mercedes Yarraouth e 05/04/79

Careichael Lillian 0027 19 Fairhaven Yarfflouth e 05/12/79

Chaffee Claire 0045 9 iJoodwind Dennis e 167177 497S33 02 05/31/79 05/30/75

Chiles Bertha 0082 25 Eastwood Harwich e 05/05/79

Clark Paula 0118 1578 Samuel

1

Falmouth h 144202 05/20/79

Clear Alice 0164 89 Eastwood Mashpee eh 05/31/79

Clenens Vanessa 0063 43 Harper Yarmouth e 176443 53 12/31/79 05/12/79

Cohen Dora 0019 38 Lucille Yarmouth e 05/07/79

Considine Gladys 0026 15 Healy Yarmouth h 270766 05/31/79 ceceased 05/31/79

Craig Helen 0133 79 Sidney Falfflouth eh rfiedicatio 876847 277433 43 01/31/80 05/08/79

Craig Alice 0017 504 University Harwich e 05/05/79

Crawford Alida 0103 5 Little Pocket Yarmouth e 05/21/79

Curren Cindy 0142 62 Parkhurst Falmouth h 509556 05/03/79

Cutler Miria/m 0032 21 Woodale Yarrrtouth a 415443 0 04/30/79 05/16/79

Oavis Evelyn 0102 201 Bella Vista Dennis e 05/20/79

Denny Charles 0055 79 Patty Yarmoutn e 05/08/79

FIGURE D-19. MASTER CLIENT FILE

D-20

PIASTER CLIENT FILE

c u

1 r,

a i

Last Nanne First Nawe ID Address City 5 SoecNeec XX1 5 Term Date Term l^y? EditOate

Denton ?<filared 0136 11 Wocxiale Fal«iouth e 05/05/79

DiLuzio Helen 00fi7 196 Mayflower Yarisouth e 537443 08 06/30/79 05/10/73

Dodd Madeline 0043 143 Deik Harwidi e o/u drugs 05/31/79 bill overdue 05/31/79

Donadio Ethel 0002 57 Hi Helen Sagaaiore h 070380 05/04/79

Earl John 0075 47 Fustic Dennis h 05/01/79

Easier Joach in 0163 64 Fuller Bourfie eh rcedicatio 278530 05/21/79

East Sarah 0084 12 Dunbarton Yarsnouth eh 184621 05/07/79

Edeistein Dorothy 0067 140 Ruth Ann Yarniouth e 05/12/79

Evans Hilda 0025 21 Lockhart Yarmouth eh 443443 13 10/30/79 05/09/79

Fischer Florence 0037 90 i Joyce Demns eh escort 05/20/79

Fleishfiian Olive 00S4 9 Trailridge Dermis e 05/16/79

Fuoco findy 0156 i437 Live OaK Pocasset weh 05/16/79

Seduan Corinne 0069 43 Andrea Hyanriis weh 241280 05/14/79

Glen Charlotte 0020 25 Casio Drive Brewster h 05/08/79

Golden Jatvses 0085 49 Eastwood Dennis e escort 05/08/79

Srieble Clarke 0080 90 Herautage Falnouth eh structure 548322 05/25/31 eligibility 05/04/79

Griffin Seneviev 0141 4 Pcooy FaiiBouth e 05/02/79

Griswold Ethel 0097 567 Anita Dennis e 036404 415833 05/51/79 05/15/79

Grollman Ida 0093 65 Bedforo Dennis e 35/15/79

Guttierez Isabelle 00l2 14 Mangold YarRsjuth weh 65/31/79

Haraian Robert 0137 46 Uyatt Falmouth eh escort 614760 05/04/79

Hawkins Eileen 0101 54 Syracuse Yarmouth e 05/19/79

Heinz Richard 0073 1 Asoburton Hyannis weh 983379 05/18/79

Helsns Helen 0114 100 Cowing Yarmouth e 05/22/79

Hillegass Agnes 0030 408 Highland Yarmouth e 05/14/79

Hoffjnan Manuel 0128 149 Firview Faiiaouth eh 258155 05/12/79

Huinonrey Bertha 0108 14 hiorthview Dennis e inedicatio 137453 50 06/30/80 05/27/79

Hunt Elizabeth 0022 Ws Trail Yarmouth e 05/10/79

Hunt Mary 0138 7l Belhaven Faliiiouth eh 969433 23 09/30/79 05/03/79

Hurst Anna 0039 101 Albany Yarmouth e 646443 40 03/31/80 05/17/79

Hastens George 01U 1938 Hurricane Dennis eh 05/25/79

Haufiaan Seneviev 0070 24 Chesley Hyannis eh escort 362652 65/15/79

Kerry Sheila 0074 82 Grosvener Hyannis e 05/19/79

Kiiey Milo-ed 0035 14 Clover Yarmouth h ro Dhone 05/18/79

Laoon Peter 0131 1501 Beacon Falsiouth 9f1 05/10/79

Lawson Maoeiine 0023 50 Valley Yarmouth e 65/07/79

Leahy Hilliax 0104 948 highlarfd Cantervili eh '326711 05/31/79 moved 05/31/79

LocKe Cathleen 0016 17 Frincewood Yarmouth weh 05/04/79

Loiselle uuente 0078 14 Mark Dennis weh 35/04/79

Long Yolanda 0125 3 Lewis Mashcee eh 857683 441043 25 09/30/79 05/14/79

Luger John 0123 Fisnfry Falmouth wh 525048 05/16/79

FIGURE D-19. MASTER CLIENT FILE (CON'T)

D-21

WftSTER Client file

Last Nasie First Naaie ID

_yons Joseon 0161

Marcus Mary 0117

flarKovsxy Nartcy 0107

Matnias Itiitcn 0135

Meyer Ra Ion 0046

Miiis firm 0076

Mitcnell Rnoda 0113

Mondaic Jasies 0:32

Ptomhar. nelen 0065

Morris Et.nei 0026

Moses Rooer 0151

Mufsor Florence 006.2

Mufson Dons 0053

Murry Ola 0166

NeMaar, Jaiaes 0039

NiCflOiS .\icnolas 0100

Nurir. finr. 0050

Ojeda Ravsonc 0126

OrMsoy Rosina 0029

ParchUK6 fiiice 0066

Peexe Mary 0040

Pell ."Cary 0007

Pel* Neil 0011

Percy Ml.ere: 0bS2

Periautter Ida 0li2

ProxEire tarry 0047

Pryor Avis 0120

Pryor Eudera 0121

Quicoe ?%l'Xy 0018

Rarrfj Irene 0140

Reaiy tane 0010

Rice Aaron 0046

Rotn itarion 0159

Rudoiar. Rooert 0005

Russo Rov 0033

Sanesan Tneresa 0147

Saroannes Ricnard 0106

Sasser Cresoula 0i45

Seal Mane 0124

Sharff Irer* 0036

She^aari Miiton 0119

c

a

s

Address City s

1945 Warm Sorin Sanswicn en

5 Pioer Centervi 11 e

9 San Felipe Mas.'oee n

29 N Pocasset wn

S3 westsnore nyannis eh

81 Pinecrest Yarreoutfi eh

29 Snaw uotuit er.

5 Live OaK Buzzards B hr,

49 Fen»<iCr< Brewster wen

2 Sheet «£ter Dennis e

14 LaKedale Hya'nnis wn

14 Junius nyannis e

6 Mil; River VariTiOUtn e.h

7l hasnuia Hyann.s e

9 Fiaaingo Yarjfioutn e

20 Maverick VarEiouCd s

54 uongfeilow Varaouth e

*20 NoSTiua Pocasset e

1335 Tuhr-.aast Yarsoutn a

hincaiili Villa: Dennis e

11 CuBoerlara Yarr^outn a

26 Barcara VarfBOutn en

70 SuiiTier Yar;flOut.h 6

* East hoarf Dennis e

l3 AMite.'-averi Denn-.s e

1? uencinp YarsTCutt a

10 Pildriai P.ocasset en

34 Flounder r.yannis eh

5 Saoalas Orleans .n

9 St FrariCis raiffi^outh e

IS Manew Yartiicutn eh

4 hyatt rtarwic.': er,

15‘00 -ennsylvan Centervi 1

1

weh

i37 .Mam Cnatna'i: e

206 B’rodfieid Yam;out;“ eh

1507 vmehocc hyannis h

46 Eralehood Mas.'ioes h

101 _oo5ter Faiflioutn en

70 Mors land Centervill er

61 Stai'Cuo Harwic."i e

u

n

:

SoecNees Med? XX# s

i!97738

I TiXt 000

65158?

r\o 7?ior^

55E333

E36168

no 'yofs

66iS61£

nc onsne

27S643

65S413

struct S:'S

12292E

Gscort

sti^uct ire

no D.'icne

7402.36

255?52

iimi
541275

structure 5Ss/50-

i w/aunt

646238

Tern'i Date Tens Any"^' EoitDate

05/20/79

05/21/73

^/d&m
35/06/73

05/01/79

05/02/73

05/09/73

05/11/79

05/12/79

05/13/79

05/06/79

05/10/79

05/31/79

05/21/79

05/16/73

05/05/79

05/13/73

05/13.79

05/09/79

05/22/79

iimm
05/25/79

05/14/73

7S/24/79

05/02/79

i5/W7S

i5/l&m
05/06/79

05/01/75

05/23/79

I5mn3
isn&m
z5/iins

^/nns
05/09/75

05/29/79

05/07/79

35/15/79

05/19/75

05/19/79

463635 0

1 Celt iidee 3-ourne e jsecicatic

FIGURE D-19. MASTER CLIENT FILE (CON'T)

12/51/73

02/26/73

D-22

WSSTtS CLIEM FIlE

c

3 I

5 t

Las; Nasie F:rst ivas'ie ID fiddress City 5 SoecNeec XX? Tera Date iei"3i Why? EditDate

SKitn flloert MIS 3l :iou5ley Varffloutn eh 111333 iC 03/31 /7y 05/03/79

S3ecrer Jcnr; 64 Vinton hyanris e 05/14/79

Stafford Julia 0130 3300 Nat (ira Falmouth sn 843343 50 04/30/30 05/10/79

Stariev riarriet 0.^9 iSi Hiil Slen Faistc^utn wen 03/82/73

Staoiatcn EiizaDeft 0105 £S Cl son Denms wen 755333
f 1
*C 06/30/79 05/30/79

Stenris (lelei'i 0109 23 wyatt Yarjfioutn 8 26373b 116443 30 01/31/80 85/26/7S

Stewart Bertna 0039 14 .\cr.<;an na'^wich e 05/11/79

Tanfver ftnn 0063 7 Xonticeiio rtyannis eh mecicatic 4: 1262 85/13/73

TratDier Kathryn 0013 43 Efiseraid Dennis sn 111347 l5 11/30/79 05/01/79

Theohoic Sooer 0054 134 Forest {-;yanni5 weh 05/07/79

To*er Nicholas 0134 27 Breaker vocassst wen 05/07/79

^Isfi Kary 00E4 £6 Sinclair Dennis e 647643 09 06/01/79 05/06/79

i^rner Nellie 0144 13 Saarl Fai.mouth en 543937 05/86/79

iieiKer Catherine 0165 21 Cabot Cot'ii; weh 05/31/73

winkier John 0127 93 Beth raliTiOUth en ft3240w
<7
A t 09/30/73 05/12/73

wise Juha 03SS 198 Tahoe Yarffiootr; e 05/15/73

Younc Margaret 0061 48 Sheryl Yaihaouth eh aedicatio 05/31/79 overdue oil: 05/11/79

Zuk:n Katherine 0051 108 Lawther hyannis en 203966 05/06/73

FIGURE D-19. MASTER CLIENT FILE (CON'T)

D-23

APPENDIX E

BLANK FORMS

This Appendix contains blank forms for your use in manually designing your
R:base data base. The following forms are provided:

• Attribute Definition
• Report Layout

E-1

ATTRIBUTE DEFINITION FORM

Attribute Name Type Length Key

FIGURE E-1. ATTRIBUTE DEFINITION FORM

E-2

o
t—

(

I—
<c

oo
a;o
Cl.

3C< I—
I— Q< 'O 3
fC •Q I— _JZ < O

UJ O O
t-H ^ •

H- _J
UJ < O
GQ O O

S Q

UJ •Q Z _lZ < O
UJ Z O

CJ3 S —

I

UJ 5 O
03 Z O

UJ •

I— Z 00<1-10Q _J Z

QQ
UJ —I
I— C
ZD i-H

03 Ct£
I—

I <
a; > UJ
I— S
I— oc <C< o z

q;
UJ

UJ GO

<z
Q

E-3

FIGURE

E-2.

MANUALLY

LAYOUT

OUT

THE

REPORT

DESIGN

i'uxjn

r.n.

APPENDIX F

NEW R:BASE FEATURES

F-1. INTRODUCTION

The new Rrbase version 1.11 is an upgrade of the original version 1.01,
incorporating several new interesting features that can be summarized as

follows:

t local variables can be used to support conditionals, computations, to
move data from one relation to another, and to read input from the

keyboard;

• conditional and “loop" processing commands to be used in creating
command files for customizing applications and repetitive processes;

• file processing commands to be used in creating command files and
looking at them, i.e., DOS commands available directly from R:base;

• a new relational command to add rows from one relation to the end of
another relation.

Each feature is explained below.

F-2. LOCAL VARIABLES

Local variables are created by assigning them a value with the "set", "fillin''

or "compute" commands. Their values may be reset or recomputed at any time by

using the same three commands. The syntax of these commands is:

"SET VARIABLE varname TO [value] (IN relname) (WHERE...)"
varname
expression
attname

"FILLIN varname USING "prompt message" (AT x y)"

"COMPUTE varname AS [COUNT] attname FROM relname (WHERE...)"
MIN
MAX
AVE
SUM
ALL

Where:

• varname is the name given to the local variable (max. 8 characters);
• attname is the name of an attribute;
• relname is the name of a relation;

f "prompt message" is the message used to prompt the operator to type

the value of the local variable being defined;
• X, y are the coordinates (x<=24, y<=80) representing the row and

column where the prompt message will begin on the screen.

F-1

F-3. CONDITIONAL PROCESSING

The "IF" command is used in a command file to conditionally process a series
of commands. It tests a set of conditions and, if those conditions are met,
then all command lines up to the corresponding (and obligatory) "ENDIF"
command are processed once. The syntax is;

"IF conditionl ([AND] condi tionZ. . .) THEN
OR

ENDIF"

The conditions are specified in the same way as in the WHERE clause, except
that local variables are tested, rather than attributes in a relation. The
conditions are formed by comparing a variable name to a value, another
variable name or an expression. The "WHILE" command has the same structure of
the "IF" command, substituting "IF" for "WHILE" and "ENDIF" for "ENDWHILE".
The difference is that all commands between the "WHILE" and the "ENDWHILE" are
processed repeatedly until the conditions in the "WHILE" statement are no

longer met.

The "QUIT" command is used to terminate all "WHILE" and "IF" blocks, exiting
the command file and returning control to the keyboard. The "QUIT" command
then closes all active command files.

F-4. FILE PROCESSING

The "DIR" command works the same as in MS-DOS, i.e., it provides a directory
of the files in the specified disk drive. The MS-DOS conventions about

wildcards, etc. are applicable here.

The "TYPE" command also works as in MS-DOS, displaying the contents of the
specified file on the screen.

The addition of these commands are major improvements. For example, under the
old system, it was necessary to exit R:base to check the file directory to

make sure file size was not too large to prevent specific operations. This
function can now be performed while remaining in Rrbase.

F-5. NEW RELATIONAL COMMAND

The "APPEND" command takes rows from one relation and appends them to the end
of another relation. Unlike the other relational commands, "APPEND" will not

create a new relation; instead, the destination relation is permanently
enlarged to include the new rows. The syntax is:

"APPEND relnamel TO relnameZ"

F-2

This command is very useful in adding a day's data entry onto a master
relation. For example, instead of "unioning" the various vehicle schedule
files to form yet a third file, you could simply combine two files into one.
This will greatly lessen the disk storage requirements of the scheduling
function.

F-3

9 t, .JWPBlNt' V •
• -r

6 <on9 i nf fut<»u y'»*v «f bfiNwHOr) zMT
,

3ai^*tuY 4ffit'’*i^nof«tu’5^ '>0-

“ Q^mkt. .to* elowii'itijim- *» >‘j x I.^£.3^h tw e f/(t
••

- (teMi ;| ,<hi^aif||f*V||(^;'j'V'!'

•
!! .p- WT

- *,

.

' 'V

j.hd 'iscte.

va f >t|r>t;twi|t,
'

f''
• h)u ii^ **NB

«(&.," t» 4 "t.tf.it?'"*'

>, i>
i„„

^ ^ U!-

ST

.

...^'

^*1^

\ _ .

V 4T4 'r '''|W'^

wv in'"*.
»

r ». fiiilW^v'*';!!^,'

^ '

4il . I

i\M ^ f iii^%^ itm c4f*toA^ ME N

#

. ^.,. ^
.4il..^!| :• ^!"'- -ivy trt4^" • '•

.•rMSii .()*«« 't?**^^tv>n'>

.

tMi
.

-i< ;"' » '‘:?-!f*^"’V

-t.

^S^. ajj-g- .V

M» MN
^ ' *«**

<'U^ i«r i'» •' t

.
....

ma
:..y.^

* Ml
'i!B .-./4V'...

ttuai -l I fx

V'll fK'ii

DOT-l-84- 51

TEChl^QLDEV^BhflHil^G
I

A Program of the U.S. Department of Transportation

